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In many simulations of turbulent flows, the viscous forces ν∇2u are replaced by a
hyperviscous term −νp(−∇2)pu to suppress the effect of viscosity at the large scales. In
this work we examine the effect of hyperviscosity on decaying turbulence for values of
p ranging from p = 1 (ordinary viscosity) up to p = 100. Our study is based on direct
numerical simulations of the Taylor-Green vortex for resolutions from 5123 to 20483. Our
results demonstrate that the evolution of the total energy E and the energy dissipation
ε remain almost unaffected by the order of the hyperviscosity used. However, as the
order of the hyperviscosity is increased, the energy spectrum develops a more pronounced
bottleneck that contaminates the inertial range. At the largest values of p examined, the
spectrum at the bottleneck range has a positive power-law behavior E (k) ∝ kα with the
power-law exponent α approaching the value obtained in flows at thermal equilibrium α =
2. This agrees with the prediction of Frisch et al. [Phys. Rev. Lett. 101, 144501 (2008)] who
suggested that at high values of p, the flow should behave like the truncated Euler equations
(TEE). Nonetheless, despite the thermalization of the spectrum, the flow retains a finite
dissipation rate up to the examined order, which disagrees with the predictions of the TEE
system implying suppression of energy dissipation. We reconcile the two apparently con-
tradictory results, predicting the value of p for which the hyperviscous Navier-Stokes goes
over to the TEE system and we discuss why thermalization appears at smaller values of p.

DOI: 10.1103/PhysRevFluids.5.024601

I. INTRODUCTION

Most planetary and astrophysical flows are highly turbulent. As a result, for a wide range
of scales, the viscosity has no direct effect on the flow and so the flow evolves as if it were
inviscid. Nonetheless viscosity cannot be neglected because it acts effectively at the smallest scales,
converting the coherent energy of the flow into heat. It is thus essential in numerical simulations to
resolve all scales: from the large scales, where energy is injected and that follow inviscid dynamics,
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to the smallest scales, where dissipation takes place. However, even with today’s computational
power, it is still impossible to achieve a resolution that is sufficient to simulate most atmospheric
flows. Various methods have therefore been devised to model the small-scale dissipation to follow
the inviscid dynamics of the large-scale flows while correctly capturing the dissipation rate at small
scales. A popular model for spectral codes is the use of hyperviscosity, meaning that the Laplacian
of the standard viscous term is replaced by a higher power of the Laplacian. In this way the portion
of the spectral resolution devoted to simulating the viscous wave numbers is reduced, leaving a
larger range of wave numbers that evolve almost inviscidly. Indeed, hyperviscosity models have
been shown to reproduce the turbulent evolution of the large scales, manifesting the Kolmogorov
energy spectrum,

E (k) = Cε2/3k−5/3, (1)

where E (k) is the energy spectrum, k is the wave number, ε is the energy dissipation rate, and
C � 1.58 is the Kolmogorov constant.

However, the statistics of turbulent flows are not unaffected by this change of the dissipation
term and various studies have been devoted to analyzing these undesirable effects of hyperviscosity
for fluid turbulence [1–7] and Burgers turbulence [8–10]. In particular, at small scales close to
the dissipation range, hyperviscosity is known to produce an aggravated bottleneck effect. The
bottleneck effect is an accumulation of the cascading energy at wave numbers just below the dissi-
pation range, leading to a change in the power-law behavior of the energy spectrum. The bottleneck
effect exists even for ordinary viscosity and has been the subject of many studies in turbulence
[11–15]. With the use of hyperviscosity, the bottleneck becomes more pronounced, even leading to
a nonmonotonic behavior of the energy spectrum. In fact, it has been conjectured by Frisch et al. [6]
that for sufficiently high order of hyperviscosity, the bottleneck will take the form of a thermalized
absolute equilibrium state discussed by Kraichnan [16] in which energy is equally distributed among
all Fourier modes, leading to an energy spectrum proportional to k2. This thermalized spectrum is
realized in the truncated Euler equations, for which the Euler equations are solved in Fourier space
while keeping only a finite number of Fourier modes. This system conserves exactly the inviscid
quadratic invariants of the system. The argument of Ref. [6] for the appearance of the thermalized
energy spectrum in hyperviscous flows is that as the order of the hyperviscosity is increased to
very large values, it suppresses all energy above a wave number kG (determined by the value of
the hyperviscous coefficient) while leaving unaffected all wave numbers below. It thus acts as a
Galerkin truncation, similar to the truncated Euler equations. This result was verified with the use of
the EDQNM approximation and more extensively for the one-dimensional Burgers equation [8–10].
However, it has not been verified for the three-dimensional hyperviscous Navier-Stokes equations.

In this work, we explore further the effect of hyperviscosity carrying out high-resolution direct
numerical simulations (DNS) of the decay of a Taylor-Green vortex. Taking advantage of the
symmetries of the Taylor-Green flow [17] and using a slaved time-stepping method [18] we have
been able to perform many simulations at different orders of hyperviscosity, reaching values that
are sufficiently high to test the thermalization conjecture.

II. DEFINITION OF THE SYSTEM

A. Basic definitions

We consider the 3D hyperviscous incompressible Navier-Stokes equations that control the
evolution of the velocity field u(x, y, z, t ) ∈ R3 defined in (x, y, z) ∈ [0, 2πL]3 and in a time interval
t ∈ [0, T ):

∂u
∂t

+ u · ∇u = −∇P − νp(−∇2)pu, (2)

where incompressibility ∇ · u = 0 is assumed, P is the pressure, p is the order of hyperviscosity,
and νp is a hyperviscosity coefficient. The periodicity of u allows us to use the (standard) Fourier
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representation:

û(k, t ) = 1

(2πL)3

∫
D

u(x, t ) exp(−ikx)d3x, (3)

u(x, t ) =
∑
k∈Z3

û(k, t ) exp(ikx). (4)

The kinetic energy spectrum E (k, t ) is defined as the sum over spherical shells,

E (k, t ) = 1

2

∑
k∈Z3

k−1/2<|k|<k+1/2

|̂u(k, t )|2, (5)

and the total energy is

E = 1

2(2πL)3

∫
D

|u(x, t )|2d3x = 1

2

∑
k∈Z3

|̂u(k, t )|2, (6)

The dissipation rate of energy is given by

ε = νp

∑
k∈Z3

k2p|̂u(k, t )|2. (7)

As p increases, the dissipation is concentrated at increasingly large wave numbers. We calculate the
dissipation rate as the finite difference −dE/dt , since summing Eq. (7) would multiply the small
error in E (k) by a large factor νk2p.

B. Taylor-Green vortex

The initial condition we consider is the Taylor-Green (TG) vortex [19], which is given by

uTG = U

⎡⎣+ sin(x/L) cos(y/L) cos(z/L)
− cos(x/L) sin(y/L) cos(z/L)

0

⎤⎦, (8)

so that the total energy is given by E = U 2/8. We nondimensionalize by L and U , setting these to
1. Time is scaled by the advective time (L/U = 1).

The TG vortex is closely related to the von Kàrmàn (VK) swirling flow that has been the
subject of many experimental studies [20–22]. The VK flow and the TG vortex have the same
basic geometry: both consist of a shear layer between two counterrotating circulation cells. The TG
vortex, however, is periodic with impermeable free-slip boundaries (present as mirror symmetries),
while the experimental flow takes place between two counterrotating coaxial impellers and is
confined inside a cylindrical container. The TG vortex also obeys a number of additional rotational
symmetries.

The symmetries of the TG initial conditions Eq. (8) are preserved by the time evolution. These
are, first, rotations by π around the axes x = z = π/2 and y = z = π/2, and by π/2 around the axis
x = y = π/2. A second set of symmetries corresponds to planes of mirror symmetry: x = 0, π , y =
0, πL, and z = 0, πL. On the symmetry planes, the velocity uTG and the vorticity ωTG = ∇ × uTG

are (respectively) parallel and perpendicular to these planes that form the sides of the so-called
impermeable box that confines the flow. It is demonstrated in Ref. [23] that these symmetries imply
that the Fourier expansion coefficients û(m, n, p, t ) of the velocity field in Eq. (4) vanish unless
m, n, p are either all even or all odd integers. This can be used to reduce memory storage and speed
up computations [24,25] by a factor of 8. If this symmetry is not imposed, then round-off errors can
break the symmetries as the flow evolves. However, this bifurcation occurs significantly later than
the times considered in the present study.
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FIG. 1. Reynolds number used in the different runs as a function of the order p of hyperviscosity.

To simulate the evolution of the Taylor-Green flow we used the TYGRS (TaYlor-GReen
Symmetric), a pseudospectral parallel code that enforces the symmetries of the TG vortex in 3D
hydrodynamics within the periodic cube of length 2π . Details of the code can be found in Ref. [17].

C. Choice of parameters

As the value of p is varied, the value of νp must be adjusted accordingly. To attain high Reynolds
numbers, νp should be as small as possible, subject to the constraint that the simulation be well
resolved. To ensure adequate resolution, we measured the energy spectrum E (k) at the time of
maximum energy dissipation and verified that at large k it follows an exponential law E (k) ∝ e−k/kd ,
with kd the dissipation wave number such that kmax/kd � 2. Here, kmax is the maximum wave
number given by kmax = N/3 due to dealiasing. The exponential law implies that the grid size is
smaller than the hyperviscous Kolmogorov lengthscale ηp = (ν3

p/ε)1/(6p−2) (where ε ∝ U 3/L), i.e.,
that kmax ηp > 1. This in turn implies that for a fixed grid size, νp should be chosen to have an
exponential dependence on p given by νp ∝ UL−1/3k2p−2/3

max . If we define the Reynolds number Rep

to be inversely proportional to the hyperviscosity as Rep = UL2p−1/νp, then the value that can be
achieved for a given resolution is

Rep ∝ (kmaxL)2p−2/3. (9)

The high value of p imposes additional demands on the time-integration scheme. Because of this,
we used a modified exponential method, also called the slaved method [18], which is described in
detail in the Appendix.

In the present study, we carry out two series of simulations, one with resolution N = 512, and
another with resolution N = 1024, in which we varied the value of p from 1 to 100 or from 1 to
50, respectively. The scaling Eq. (9) of the parameters for our runs is shown in Fig. 1 for the two
resolutions.

In addition, we performed a simulation with p = 1 at N = 2048, which serves as a baseline case
with which to compare our hyperviscous runs.

III. RESULTS

A. Global dynamics

The left panel of Fig. 2 shows the evolution of the energy as a function of time from the
simulations at resolution N = 1024. The right panel shows the energy dissipation rate. In both
panels, the results are compared with the results from the simulation with ordinary viscosity and
the higher numerical resolution N = 2048.

Surprisingly, even for the largest values of p used, both the energy and the energy dissipation rate
are very close to those of the high-resolution run with ordinary viscosity, with the peak dissipation
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FIG. 2. Left: Time evolution of the total energy for 10243 resolution runs for different p values compared
to the p = 1, N = 2048 run. Right: mean dissipation rate as a function of time for the same runs.

occurring at t � 8.5. Thus, despite the very different mechanisms used to dissipate the energy, the
global dynamics of the system have not been altered. This indicates that at this resolution, the rate
at which energy is dissipated is controlled by the large-scale dynamics and the energy cascade and
not by the exact dissipation mechanism.

B. Energy spectra

The global dynamics alone do not, however, guarantee that hyperviscosity correctly models the
effect of turbulence at the larger scales. In Fig. 3, we show in the left panel the energy spectra from
the simulation with ordinary viscosity and resolution 20483 at eight different times, and in the right
panel the energy spectra from the p = 50 simulation at resolution 10243. The main and intentional
effect of hyperviscosity is clear: there is a very rapid fall-off of the spectrum for k � 190. Looking
at the spectrum for k � 190, the two cases have very similar spectra for times smaller than t = 5,
for which dissipation effects are negligible, At later times, however, the p = 50 runs show an excess
of energy at high wave numbers that becomes more apparent as the peak of the energy dissipation
at t � 8.5 is approached.

In Fig. 4 we focus on the time of maximum dissipation and show the energy spectra at this
instant for different values of p. The left panel shows the spectra from the 5123 resolution numerical
simulations while the right panel shows the results from the 10243 simulations. The spectra have
been multiplied by k5/3 so that a Kolmogorov spectrum would appear as flat. The spectra are
surprisingly insensitive to the value of p. For all p, the spectra fall off for k � 130 for resolution
5123 and for k � 190 for resolution 10243. The spectra appear close to flat for wave numbers smaller
than k = 20. For larger wave numbers, we observe a dip in the spectrum followed by a bottleneck
that becomes stronger as the order of the hyperviscosity is increased. For large values of p, this
bottleneck takes the form of a power-law E (k) ∝ kαp that increases with p.

FIG. 3. Energy spectra for the p = 1, N = 2048 Navier Stokes simulations (left panel) and the p = 50,
N = 1024 simulations (right panel).
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FIG. 4. Left panel: Energy spectra normalized by k−5/3 for the 5123 numerical simulations (left panel) and
the 10243 simulations (right panel).

The dashed line indicates the prediction from thermalization E (k) ∝ k2. For each p, we obtained
the value of the exponent αp by fitting the spectrum over the increasing portion of the bottleneck,
i.e., for k in the range 50–70 in the 5123 simulations and 90–110 in the 10243 simulations. In Fig. 5
we show the value αp as a function of p. We see that as p becomes large, the exponent approaches
the thermalized value limp→∞ αp = 2 as predicted in Ref. [6].

C. Spatial structures

We now examine the spatial structure of the flows computed with ordinary and with hyper
viscosity. We first recall that the mirror symmetries of the TG vortex with respect to the planes
x = 0, π , y = 0, π , and z = 0, π confine the flow inside the impermeable box formed by these
planes. The additional rotational symmetries of angle π around the axes x = z = π/2, y = z = π/2,
and x = y = π/2 are such that the early-time dynamics can be understood on and near the faces
of the impermeable box. Computation of the flow shows that most of the dynamics of the flow for
early-to-moderate times (t < 4) occurs near these faces. Simple dynamical considerations determine
the behavior of the flow on the faces of the impermeable box, resulting in the rapid build-up of a
vortex sheet. These considerations determine the dominant features of the flow correctly for times
up to about 4. A simple model of this phenomenon is given in Appendix D of Brachet et al. [23].
Because of the high Reynolds numbers considered in the present work, for all values of p considered,
the dynamics until t = 4 is the same and essentially controlled by the inviscid dynamics.

For the standard (p = 1) NS equation, when t increases beyond 4, local vorticity maxima develop
away from the walls of the impermeable box, suggesting the formation of new daughter vortices
in the interior and a complicated flow structure, as displayed using VAPOR [26] in Fig. 6. Similar
visualizations obtained at p = 15 are displayed in Fig. 7. See Supplemental Material [27] for videos

FIG. 5. Measured values of αp as a function of p for the 5123 and 10243 simulations. The value at p = 1 is
taken from the 20483 simulations.
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FIG. 6. Isosurfaces (at 8% of maximum) of square vorticity ω2 = (∇ × v)2 at resolution 5123 in the
impermeable box, with p = 1 at t = 4, 6, 8, 10.

of the vorticity evolution for p = 1 and p = 15. Comparing these two cases, we see that at t =
6 the two visualizations are markedly different; the Supplemental video at Ref. [27] shows that
the difference can be seen starting at around t = 5. At later times, when thermalization occurs,
the vortex tubes of Fig. 6(d) are dominated by fluctuations that take the form of point blobs, less
elongated vorticity structures, as seen in Fig. 7(d). This change of structure is best seen in Fig. 8,
which shows visualizations of runs at resolution 10243 at t = 9 in a cubic subregion of width π/3
centered at x = y = z = π/2 for for p = 1 (a) and p = 10 (b). The vortex tubes that are clearly the
dominant structure in the p = 1 case coexist in the p = 10 case with point blobs that resemble the
structures that appear in visualizations of the truncated Euler equations in Ref. [28].

In Fig. 9 we show the probability distribution function of the vorticity along the x direction for the
same runs at the same time. The long tails that are present for the p = 1 simulation are suppressed
for p = 10 since the system’s behavior is closer to the Gaussian behavior expected for a thermalized
state.

D. Thermalization and finite dissipation

Looking at the previous sections we have two apparently contradictory results. On the one
hand, based on Fig. 2 there is finite energy dissipation that is independent of the value of p
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FIG. 7. Isosurfaces (at 12% of maximum) of square vorticity ω2 = (∇ × v)2 at resolution 5123 in the
impermeable box, p = 15 and t = 4, 6, 8, 10.

used. This indicates that this is an out-of-equilibrium dissipating system. On the other hand, the
energy spectrum and structures resemble those of the thermalized absolute equilibrium state [16].
As discussed in the introduction, the thermalized state is realized in the truncated Euler equations,
where a finite number of modes is kept and the energy is exactly conserved. Thus, if indeed there
was a transition from the hyperviscous Navier-Stokes equation to the truncated Euler equations,
then one would expect to see a suppression of the energy dissipation that is not observed here.

To resolve this discrepancy we recall the arguments in Ref. [6], in which the energy dissipation
term in Fourier space is written as

−νpk2pûk = U

L

(
k

kG

)2p

ûk, (10)

where νp = Uk−2p
G

/L and kG is a wave number in the dissipation range chosen off-lattice so that
no wave number is exactly equal to kG . The limit p → ∞ is then taken while keeping kG fixed.
This is similar to the procedure followed here, where we tuned νp so that the maximum of the
dissipation spectrum is smaller but close to the maximum wave number allowed by our grid. In this
case it is clear that, as p → ∞, wave numbers smaller than kG will not feel the effect of viscosity
while wave numbers larger than kG will be suppressed. The whole system will thus resemble the
truncated Euler system with kG acting as the truncation wave number. However, for a finite p (if
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FIG. 8. Enlargement of a cubic subregion of width π/3 centered at x = y = z = π/2 of isosurfaces of
square vorticity ω2 = (∇ × v)2 at resolution 10243 and t = 9. Left: p = 1 and isosurface at 10% of maximum;
Right: p = 10 and isosurface at 20% of maximum.

the Fourier wave numbers are sufficiently dense) there will be wave numbers close to kG that will
be effective at dissipating energy. To estimate the width of wave numbers that effectively dissipate
energy we consider the dissipation spectrum given by D(k) = νpk2pE (k) and assume that at large k,
the energy spectrum takes the form E (k) ∝ kαpe−k/kd . Therefore, D(k) ∝ k2p+αpe−k/kd , the integral
of which gives the energy dissipation rate ε. For large values of p, the dissipation spectrum is highly
concentrated around a wave number k∗ and the integral

∫
D(k)dk = ε can be estimated by writing

k2p+αpe−k/kd = exp[(2p + αp) ln(k) − k/kd ] (11)

and using the steepest descent method. Expanding the argument of the exponential around its
maximum value at k∗ = (2p + αp)kd with D(k∗) = D∗ = νp(k∗/e)2p+αp , we see that the dissipation
spectrum can be approximated as

D(k) � D∗ exp

⎡⎣−1

2

(
q

k∗/
√

2p + αp

)2
⎤⎦, (12)

FIG. 9. Probability distribution function of the vorticity along the x direction at the peak of the energy
dissipation for the runs at resolution 10243 for p = 1 and p = 10. The distributions were computed inside the
impermeable box, with the same conditions as in Fig. 8.
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where q = k − k∗, i.e., as a Gaussian centered at k∗ of width

δq � k∗√
2p + αp

. (13)

In our simulations, we tuned νp so that the maximum of the dissipation spectrum at k∗ remained
fixed and close to the maximum wave number kmax. Therefore, the wave numbers that dissipate
effectively are those that are approximately within a distance of δq away from k∗.

For the dissipation to be suppressed, the width δq must be smaller than the spacing δk between
two neighboring shells that contain at least one wave number in the discrete wave number space
k ∈ N3. In three dimensions, the spacing between neighboring spherical shells of radius k is of
the order δk � 1/k. (To illustrate this point, we note that the closest spherical shell to the shell
containing the wave number k = (0, 0, k) is that which contains the wave number k′ = (1, 0, k)
and has norm k′ = √

1 + k2 � k + 1
2 k−1 + · · · .) Equating δq obtained from the steepest descent

method with δk = k′ − k we obtain that the system will behave like the truncated Euler equations
and energy dissipation will be suppressed when δq � δk which implies that

p � k4
∗ . (14)

Given that k∗ in our simulations is of the order k∗ � 150 for the 5123 and k∗ � 300 for the 10243

simulation, it is clear why energy dissipation still persists in this system: the order p would have to
be around 1010 to see a strong suppression of the energy dissipation. At p of order 50 and 100,
the system can still effectively dissipate energy since there are many wave numbers inside the
dissipating shell.

What does change, however, as p is increased is the number of triads k1 + k2 + k3 = 0 of
interacting wave numbers that can transfer energy inside the dissipating shell. This number is
decreased drastically as δq becomes smaller. In contrast, the number of triads that redistribute
energy among all wave numbers and lead to the thermalized state remains fixed. The ratio of the
two therefore becomes smaller as p is increased (because δq is decreased). This leads the system
to a quasiequilibrium state, in which the mean forward flux of energy (caused by the triads that
transfer energy to the dissipating wave-number shell) is subdominant to the fluctuations caused
by the remaining triads that redistribute energy among modes leading to a thermalized state. This
behavior has been observed recently by two of the authors [29], who showed that the thermalized
behavior can appear in forced and dissipated flows for the truncated Navier-Stokes system. It was
shown that for a given injection rate as the viscosity is reduced, the system makes a transition to a
quasiequilibrium, with the appearance of a thermal spectrum, provided that kmax η � 1. A similar
situation occurs in the present system, not because of the reduction in viscosity, but because the
dissipation is limited to wave numbers inside a thin spherical shell.

IV. CONCLUSION

In this work we have examined decaying turbulence initiated by a Taylor-Green vortex using
hyperviscous numerical simulations for a wide range of orders of the hyperviscous parameter p. We
have shown that it is possible to integrate the Navier-Stokes equations with hyperviscosity of order
p of 50 or 100, much higher than the values of 2 to 8 that have been previously studied [1–5,7]. For
all values of p that we examined, the evolution of the total energy and its dissipation rate remained
unaffected by the hyperviscosity and close to those of high-resolution p = 1 runs. The spectra and
the structures remain unaltered up to t = 5, where almost inviscid dynamics are followed. At later
times, however, the structures and the spectra diversify with the order of p.

Even at these later times, the low-wave-number portion of the spectra is surprisingly insensitive
to the value of p even for high values of p, but the inertial range (the part of the spectrum that
displays a k−5/3 scaling) does not extend to indefinitely high k. As the order p is increased, a stronger
bottleneck forms and the spatial structures change from vortex tubes to a mixture of vortex tubes
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and point blobs. Further studies would shed light on the nature of high-p hyperviscosity, now that
we have demonstrated its practical feasibility.

The main focus of this work was on the turbulent behavior at increasingly large values of p and
attempted to make the connection between the bottleneck effect that is present in the usual Navier-
Stokes equation and the thermalization of the flow that develops in the truncated Euler equations. We
showed that as the hyperviscosity order p is increased, the energy spectrum approaches that of the
thermalized state of the truncated Euler equations of Kraichnan [16]. This transition was predicted
in Ref. [6] by arguing that the hyperviscous Navier-Stokes equations approach the truncated Euler
equations as p goes to infinity. This is the first time that this transition has been demonstrated in
simulations of three-dimensional turbulence.

Nonetheless for the hyperviscous flow a finite dissipation rate independent of the value of p
persists, contrary to the situation for the truncated Euler system. We argued that this behavior is
due to the fact that for our grid resolutions and values of p, energy dissipation in Fourier space is
concentrated in a spherical shell of width δq ∝ k∗/

√
2p that is thin but still much wider than the

spacing between spherical wave-number shells. Suppression of the energy dissipation was estimated
to occur at much larger values of p.

In conclusion, a relationship has been established between the bottleneck in turbulence and
flows in thermal equilibrium. Our work has also demonstrated a continuous way to pass from the
Kolmogorov spectrum to a thermalized spectrum. Unlike other systems that have demonstrated such
a transition [29–31], this path does not involve a discontinuous Galerkin truncation. Future work
could include the forced Taylor-Green vortex and randomly forced flows for which long statistical
averages can be performed that can shed further light in the transition from equilibrium to out of
equilibrium dynamics.
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APPENDIX: TIME-INTEGRATION SCHEME

We use an explicit second-order Runge-Kutta method to integrate the nonlinear advective terms
of the Navier-Stokes equations. The linear viscous terms are often integrated via an implicit method,
to increase the timestep from that imposed by the viscous stability requirement. As the Reynolds
number increases, this constraint becomes less important than that imposed by the integration of
the advective terms, and hence explicit timestepping is sometimes used for high Reynolds number
simulations. However, the use of hyperviscosity poses a greater constraint on the timestep than
ordinary viscosity. An analogous problem occurs in integrating the Kuramoto-Sivashinsky equation,
which contains a fourth-order spatial derivative and has led to the use of an exponential scheme
and the formulation of a modified exponential scheme called the slaved scheme [18]. Here we
compare explicit timestepping with exponential and modified exponential timestepping for treating
the hyperviscous terms.

To describe the exponential methods, we write the evolution equation for a mode with wave
number k schematically as

∂t u = −νk2pu + N (u), (A1)
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where N includes both the advective terms and the pressure projection. Equation (A1) can be
rewritten as an integral equation,

u(t + 
t ) = e−νk2p
t u(t ) +
∫ t+
t

t
dτ e−νk2p(t+
t−τ )N [u(τ )]. (A2)

A first approximation, usually called time-splitting, is to set N [u(τ )] ≈ N [uN (τ )], where uN is the
result of integrating ∂t uN = N (uN ) from initial condition u(t ), here by the second-order Runge-
Kutta scheme, i.e.,∫ t+
t

t
dτ N [u(τ )] ≈

∫ t+
t

t
dτ N [uN (τ )] ≈ uN (t + 
t ) − u(t ). (A3)

The exponential e−νk2p(t+
t−τ ) in the integrand of Eq. (A2) is approximated by a single value, either
its value at one point or by its average value. The commonly used scheme

u(t + 
t ) ≈ e−νk2p
t uN (t + 
t ) (A4)

is equivalent to evaluating the exponential at the left endpoint. Evaluating the exponential at the
midpoint leads to the scheme

u(t + 
t ) ≈ e−νk2p
t u(t ) + e−νk2p
t/2[uN (t + 
t ) − u(t )]. (A5)

The modified exponential, or slaved, method approximates the exponential in the integral by its
average value, leading to the scheme

u(t + 
t ) ≈ e−νk2p
t u(t ) + 1 − e−νk2p
t

νk2p
t
[uN (t + 
t ) − u(t )], (A6)

where the fraction in Eq. (A6) is evaluated as 1 if νk2p
t is less than 10−5.
The slaved scheme Eq. (A6) has the interesting property that it is exact for all 
t in the special

case that N (u) is a constant N . A generalization of this argument shows that if N (u) varies slowly
compared with the timescale 1/(νk2p), then scheme Eq. (A6) is accurate even for large 
t .

In our case, the timestep is limited by the Runge-Kutta integration of the nonlinear term. We use

t = 0.001, for which the midpoint exponential scheme Eq. (A5) and the slaved scheme Eq. (A6)
both yield satisfactory results. For these timesteps, the left endpoint exponential scheme Eq. (A4) is
less accurate and the explicit scheme diverges.
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