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Abstract. – We study the stress profile of an ordered two-dimensional packing of beads
in response to the application of a vertical overload localized at its top surface. Disorder is
introduced through the Coulombic friction between the grains which gives some indeterminacy
and allows the choice of one constrained random number per grain in the calculation of the
contact forces. The so-called “multi-agent” technique we use lets us deal with systems as large
as 1000×1000 grains. We show that the average response profile has a double-peaked structure.
At large depth z, the position of these peaks grows with cz, while their widths scales like

√
Dz.

c and D are analogous to “propagation” and “diffusion” coefficients. Their values depend on
that of the friction coefficient µ. At small µ, we get c0 − c ∝ µ and D ∝ µβ , with β ∼ 2.5,
which means that the peaks get closer and wider as the disorder gets larger. This behavior
is qualitatively what was predicted in a model where a stochastic relation between the stress
components is assumed.

The statics of granular materials is subject to an active research, see, e.g., [1]. One of
the main issues concerns the link between the distribution of stresses in a granular medium
and its “past history” which has induced, at the microscopic level, a certain texture to the
packing. As a matter of fact, the mechanical properties of an assembly of grains depends on
the way it has been prepared. A now famous example is that of the sandpile: when built
from the source point of a hopper, the pressure profile at the bottom of a pile shows an
unambiguous minimum right below its apex [2]. By contrast, this profile is almost flat with a
slight hump when the pile has been prepared by successive horizontal layers [3]. The difference
between the two sandpiles could be seen at the level of the grains whose contacts and forces
are oriented in relation to the external solicitation applied: during the construction, grains
tend to gain strong contacts —i.e. carrying a large force— in the direction of compression [4].
This strong texture can be visualized in photoelasticity experiments which show clear “force
chains” structures [5]. The minimum of pressure at the bottom of a sandpile can then be
interpreted as a screening effect of the weight of the grains by these chains.

Conceptually, the simplest test to probe the internal packing structure of a layer of grains
is to perform a stress response function: the layer is submitted to a given force �F localized
at a point of its top surface, and the resulting additional stress is measured at some distance
c© EDP Sciences
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from that point. �F must be small and supportable by the packing, in order to avoid contact
rearrangements. The interesting point is that the shape of the averaged response function
gives some information on the grain packing.

Let us take few instructive examples. Recent experiments were performed with layers of
natural sand submitted to a vertical overload [6]. The response pressure at the bottom of
the layer presents a single centered peaked profile whose width scales linearly with the layer
thickness. Such shape and scaling resemble that of the isotropic elastic response. However, the
measurements have shown that these profiles are very dependent on the system preparation:
compacted sand layers have a much wider response peak than loose ones [7]. Other experi-
ments were performed on 2d pilings of photoelastic grains [8], showing the importance of the
amount of disorder. The stress response function of a regular packing of monodiperse beads
has a double-peaked structure localized on the two diagonals of the triangular lattice —the
behavior in 3d ordered systems is similar [9]. Polydispersity in the distribution of the grain di-
ameters make these two peaks move closer to each other. They eventually merge into a single
one at large disorder. Numerical results are also available in 2d: the stress response func-
tion of a polydisperse assembly of frictionless discs was computed using the generic isostatic
property of such systems [10]. The corresponding response profile has two peaks that become
asymmetrical when the packing is initially sheared. By contrast, Contact Dynamics simula-
tions of a disordered layer of frictional pentagons show a single-peaked response, although the
distribution of contact orientation has two clear oblique preferred directions [11].

The stress response function can also be used as a test to discriminate between all the
models which aim at describing the statics of granular materials. As a matter of fact, the
different classes of models give qualitatively different response profiles. Models with equations
of the elliptic class, like those from elastic theories, typically lead to single-peaked shapes,
with peak widths scaling like the depth h. They can however also give double-peaked response
profiles if some strong anisotropy is included [12], but these profiles keep a linear scaling with
h [13]. In models which handle scalar variables like the q-model [14], response profiles also
show a single peak, but narrower: its width grows like

√
h only. Note that such a behavior was

claimed to be observed, but on a quite particular and rather small-scale “brick” packing [15].
Initially proposed to explain the central minimum of pressure below a sandpile built from a
hopper, the models “OSL” (for “Oriented Stress Linearity”), where one postulates, as a closure
relation, a phenomenological linear relationship between the stress tensor components [16,17]
of the type σxx = ησzz + η′σxz, give by contrast hyperbolic equations. Such equations are
formally identical to wave propagative equations and have so-called “characteristics lines”
along which stresses are transmitted. The coefficients η and η′ encode here the texture of the
system they describe and thus depend on the way the packing was prepared —they are “history
dependent”. As a consequence, the corresponding response functions have two narrow peaks
resulting from the two characteristics initiated at the overload point. Edwards and Grinev,
who studied isostatic assemblies of grains with infinite friction, obtained a “stress-geometry”
equation which, in the simplest case, is equivalent to the OSL relation written above [18], see
also [19]. Tkachenko and Witten also deduced a large-scale relation of the OSL type from
microscopic quantities, but this time on isostatic packings of frictionless beads [20]. This is
consistent with the result of Head et al. cited above, but rather contradictory to the conclusions
of the extensive work of Roux on the mechanical properties of isostatic systems [21].

In this context, Eloy and Clément have proposed few years ago to study the statics of
a regular two-dimensional layer of beads [22]. Although in this system each grain has six
neighbors, only upper and lower contacts were considered —see fig. 1 (left). For frictionless
beads, all contact forces �fi must be along the normal at the contact point, and it is easy to see
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Fig. 1 – Left: grains are placed on a regular triangular lattice, but have four contacts with their
upper and lower neighbors only. x is the horizontal axis, and z measures the depth from the surface.
All lengths are measured in units of grains diameters. Only compressive forces are admissible for
these cohesionless grains. The tangent of the angle θi that the force 	fi makes with the contact
direction (dashed lines) cannot exceed the Coulomb friction coefficient µ. These forces must satisfy

the equilibrium relations 	f1 + 	f2 + 	f3 + 	f4 = 0 and f1 sin θ1 +f2 sin θ2 +f3 sin θ3 +f4 sin θ4 = 0, leaving
one undetermined unknown per grain chosen at random. Right: forces on a 70 × 60 piling due to a
vertical overload localized at its top surface. Forces are larger when the grains are darker. One can
clearly see the double-peaked response. This picture has been computed with µ = 0.1.

that they can all be uniquely computed layer by layer, from the force balance equations and the
top boundary conditions. More interesting is the case where each bead contact is subject to
a Coulombic friction condition |fT

i | ≤ µfN
i , where fT

i and fN
i are, respectively, the tangential

and the normal components of the contact force �fi. µ = tan φ is the friction coefficient: all
forces have to be in the Coulomb cone of angle φ. The force and torque balance equations give
for each grain three relations, while there are four unknowns —note that each contact belongs
to two adjacent beads. The idea is to explore the space of mechanically acceptable solutions
by choosing one of the four unknowns at random among the values permitted by the friction
conditions. Besides, we also impose that all contact forces have to be positive. Therefore, this
simple toy model, where disorder is governed by friction only, gives a clear framework where
one can compute contact forces.

The stochastic calculation begins at the surface z = 0, where overload forces are given, and
continues deeper and deeper, one layer after another. Sometimes, the interval of admissible
values in which the random number must be chosen is empty and thus makes the choice of
this random number impossible. It means that for given upper forces on such a grain, at least
one of the lower forces would be out of its Coulomb cone, or that a contact force is negative.
A rearrangement has then to occur. In the original work of [22], the random numbers of the n
previous layers were simply recomputed until the calculation could go on, where n was chosen
proportionally to the number of failures encountered in the current layer. Such a procedure
is of course very slow and actually makes the total computation time increase exponentially
with both the size of the system and the value of the friction. The pile could then be entirely
rebuilt hundreds of times before having the chance to generate no impossibilities at all. In
practice, it was not possible to build, in a reasonable CPU time, piles larger than 50 grains
for µ ≤ 0.6, which makes statistical and large-scale studies difficult. On these rather small
pilings, OSL features were evidenced [22].

A much more sophisticated method called GranuSolve [23] involving a so-called “multi-
agent” representation and eco-solving algorithms [24] has been used here to improve the
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computation of the model. In this method, we consider each bead as an “agent” whose “goal”
is to reach its static equilibrium with respect to its mechanical conditions, i.e. to “solve itself”.
When a grain is solved, it communicates its contact forces to its lower neighbors. The lower
bead-agents continue the process, and solve themselves until a failure is encountered by one
of them. In such a case, the bead-agent asks its upper neighbors to change their own values
for the contact forces they have in common. The rearrangements are therefore treated locally
by the grains and we do not need to recompute all random numbers from the upper layers
but only in the local area from where the failure occurred. When averaging the data, all
configurations are taken with the same weight. To avoid any bias in the scan of the space of
solutions, we were particularly careful in the choice that the simulation makes for the next
bead-agent that needs to get priority treatment. The choice that we finally kept was to solve
grain layers from top to bottom, starting on a new random grain on each layer, and treating
unsolved grains as “clusters”. With this technique, the computation time is linear with the
number of grains, and a complete resolution of a 1000 × 1000 pile takes few minutes on a G4
400 MHz machine, up to friction coefficients as large as µ ∼ 1.7. We shall, however, restrict
our discussion to relatively small values of µ for which averaged data confidence is high.

In this letter we would like to present features of the stress response function of this
model. Gravity is switched off. All grains of the top surface z = 0 are overloaded with a
unitary vertical force fz = 1, except for the central bead at x = 0 on which we apply fz = 2,
see fig. 1 (right). For a given value of the friction coefficient, all contact forces are computed
and averaged over typically few thousands of samples. The uniform unitary confining overload
is subtracted. We call P (x, z) the resulting vertical pressure at point x and depth z. Note that
this is not the standard response procedure, which should have been the following: i) apply a
uniform overload at the top and solve for all contact forces in the layer; ii) add a small extra
force at x = 0, and solve for the new forces, keeping the same random numbers for each grain;
iii) subtract the two previous stress profiles to get the response. Of course, this would have
been much slower. To justify our alternative procedure, we checked that, as long as µ is not
too large, the percentage of grains that have to change their random number in step ii) in
order to satisfy the friction conditions with the new forces is reasonably small —of the order
of 0.5% for µ = 0.1, 2.4% for µ = 0.3. Besides, these rearrangements are rather localized and
concern preferentially forces that are small compared to the additional overload.

Two pressure profiles are shown in fig. 2. They have been computed on 500× 200 systems
with µ = 0.3, and measured at 30 (left) and 90 (right) grain layers depth. They have a
double-peaked structure which can be well fitted by a double symmetrical Gaussian profile:

G(x) =
1

2
√

2πW 2

[
e−

(x+xp)2

2W2 + e−
(x−xp)2

2W2

]
, (1)

where ±xp are the positions of the peaks and W their widths. As the depth z increases, the
peaks move away from each other, and they also get smaller and wider. Although residual
fluctuations are large —they regress like 1/

√
Nr, where Nr is the number of realizations— we

are able to extract a response whose amplitude decreases like 1/
√

z.
We have studied the evolution of the two parameters xp and W of the pressure profiles as a

function of depth. As evidenced in fig. 3, at large z the ratios xp/z and W 2/z saturate to some
asymptotic values. In other words, we can define, in analogy to wave propagation and diffusion,
a coefficient of “propagation” c and “diffusion” D such that xp = cz and W =

√
Dz. We

emphasize that these scalings are not compatible with a homogeneous, anisotropic elasticity
analysis. The coefficients c and D depend on the value of the friction µ. As a trivial example,
c = c0 = tan 30◦ and D = 0 at zero friction. c and D as functions of µ are plotted in the insets
of the graphs in fig. 3. As one can expect, D increases with µ. Less intuitively, c is weakly
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Fig. 2 – Vertical pressure profile P (x) in response to a unitary force localized at x = z = 0, measured
at 30 (left) and 90 (right) grain layers depth, i.e. at z = 95.8 and z = 147.7. The thin lines are
numerical data averaged over 3461 different samples. The thick ones are the corresponding Gaussian
fits G(x) which give the peak positions ±xp and width W . As the depth z increases, the peaks move
away from each other, and get smaller and wider. These data were computed with µ = 0.3.

reduced by the friction. This last result is in agreement with the experimental observation [8].
More quantitatively, we get the following scalings: c0 − c ∝ µ and D ∝ µβ , with β ∼ 2.5.

The features of the pressure response profiles obtained in these calculations resemble very
much those which were predicted in [25]. The goal of that paper was to study the role
of the disorder on OSL equations, i.e. to close the equilibrium equations by the relation
σxx = η[1 + v(x, z)]σzz, which represents the local heterogeneities of the granular packing.
v is a random noise. Its mean value is zero and its correlation function is chosen to have
the factorable form 〈v(x, z)v(x′, z′)〉 = ∆2gx(x − x′)gz(z − z′), where the functions gx and
gz are taken short-ranged. ∆ is the amplitude of the disorder. When the disorder vanishes,
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Fig. 3 – Left: at large depth, the positions of the response peaks scale linearly with z: xp = ±cz
where c is the “propagation” coefficient. This quantity decreases linearly with the friction coefficient
µ. Right: similarly, the peak width grows as in a “diffusion” process: W =

√
Dz at large depth.

D varies like µβ , with β ∼ 2.5 (solid line) —see also fig. 4. The curves c(z) and D(z) have been
computed with µ = 0.3.
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Fig. 4 – This plot shows the “propagation” coefficient c as a function of the “diffusion” one D. Each
point corresponds to a different value of µ. As emphasized by the inset, c0 − c ∝ Dα at small D, were
the best fit gives α = 1/β ∼ 0.4 ± 0.01 (solid line).

the pressure response function is simply that of a wave-like equation, i.e. the sum of two
δ-functions centered at xp = ±c0z, where c0 =

√
η. For finite disorder, although the exact

shape of the response profile is more complicated than a double Gaussian like (1), it can
also be characterized by the position of the peaks x = ±cz and the amplitude of their width
W =

√
Dz. The calculation, carried out in the limit of small ∆, gave c2

0 − c2 ∝ ∆2 and
D − D0 ∝ ∆2. D0 is the diffusion coefficient due to the underlying lattice on which the
model is defined —in the case of the triangular lattice used here, D0 = 0. In other words, the
quantitative role of disorder that was predicted is the same as what is obtained here with this
numerical model, but the scaling seems to be different. The theory in [25] predicts a linear
relationship between c and D, at least at small D. Figure 4 shows the corresponding plot
from the numerics. As evidenced in the inset, we rather get c0 − c ∝ Dα, with α = 1/β ∼ 0.4.

How can we account for this difference? It is actually not easy to identify the clear
correspondence between the random noise v of the theory in [25] and the disorder generated
by a random choice of a contact force under Coulombic friction conditions. An important
difference, however, lies in the fact that, in contrast to the noise v, the random variable
implemented in these numerics certainly leads to a noise with a finite mean value. This bias
is probably dominant in the behavior of c, but not on that of D.

To check this point, we plan to use one of the “microscopic justifications” of the stochastic
OSL relation proposed in [25], which was called the “three-leg model”. In this model, the
beads lie on a rectangular lattice and transmit their forces to their three lower neighbors, the
central force being random. Thus, although no friction condition was explicitly written, the
spirit of the two modellings is very close. The advantage is that we know how to relate the
mean of the random number to the mean propagation coefficient c̄0, which should allow us to
extract the additional effect due to a zero mean noise. In the three-leg model, however, no
backtracking calculation was implemented, and eventually negative forces (tractions) appeared
at some finite depth, making the calculation invalid beyond this point. In the future, we plan
to use the highly efficient multi-agent technique at work in the GranuSolve algorithm that
we devised, to test the three-leg model on large-scale simulations with the self-consistent
condition of positive forces.

Finally, as mentioned in the introduction of this letter, experiments showed that strongly
disordered frictional granular systems actually have single-peaked response functions [6–9].
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In these simulations, even at very high friction coefficient (up to 1.7), we were not able to
observe any peak merging. A possible explanation may be that some additional geometrical
disorder is required. We then plan to extend our work to packings where some random links
between grains are opened and thus cannot transmit any force.
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