A Landscape Analysis of Constraint Satisfaction
Problems

Florent Krzakala, Jorge Kurchan and Romain Mari

PMMH-ESPCI, Paris
jorge@pmmh.espci.fr
http://www.pmmh.espci.fr/~jorge

STATPHYS 2007



Constraint Satisfaction problems

We are asked to find configurations of a system that do not violate a
constraint: no particles overlap, no logical statements contradict, no
adjacent nodes of a graph have the same color ...

We have a parameter that sets the difficulty: particle size, number of
logical statements, number of graph links ...

We try to ‘optimize’: i.e. find solutions in the hardest conditions.



Usually:

Introduce an energy= number of errors (overlaps, contradictions,
miscolorings) and study the zero-energy configurations.
e.g. soft particles in the zero-temperature limit

Alternative strategy: we work in a space without allowing errors.
We introduce a pseudo-energy landscape and its conjugate variable
(a pressure)

and make the assumption that complex
pseudo-energy landscapes are qualitatively similar
to complex energy landscapes.



Some puzzling questions become clarified (even
trivialized).

Two examples:

The ‘unreasonable’ effectiveness of unsophisticated
optimization algorithms.
Why do algorithms like Walk-SAT find solutions well beyond the
putative ‘hard’ level?
Beyond which level is an algorithm truly admirable?

The J-Point

How do we place it in the context of the rest of glass theory?



Performances in terms of «
(average number of clauses or graph connectivity)

Contrary to expectations, ay does not seem to play a role
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Hard sphere packings
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J-Point

Procedure: increase the radius of the spheres gradually, infinitesimal
overlaps are removed through repulsion. Continue until the pressure
is infinite: this is the J-Point.

(O’Hern et al., Lubachevsky-Stillinger,...)

The actual volume fraction reached is very close to the one quoted as
Random Close Packing

The J-Point so defined has criticality properties (soft modes,
diverging lengths and susceptibilities, isostaticity).



Sequential Incremental

We can by analogy follow a similar strategy for Coloring or SAT
problems, and define a J-point for them.

For graph coloring: we write a list of the links. Start from no links, and
add them one by one. At each step correct to avoid miscolorings.



Landscape conjugated to pressure
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Landscape conjugated to pressure

pseudoenergy
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Conversely, cutting microcanonical slices of an energy landscape we
obtain a constraint optimization problem (and benefit from a long
experience).




The J-Point and Sequential Incremental procedures
are zero-temperature descents in pseudo-energy,
starting from a random configuration

(i.e. analogous to an infinite temperature inherent structure).



The Spin-Glass landscape
(just for reference)
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Random First-Order Landscapes
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Random First-Order Landscapes
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Random First-Order Landscapes
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Random First-Order Landscapes
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Random First-Order Landscapes
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Random First-Order Landscapes
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Random First-Order Landscapes
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in general many ‘transparent states’ (cf. an old bet)
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COLORING: ‘time’ versus difficulty.

1e+07 = .
N=107 |
N=2.10
1e+06 | N=4.10° - | ]
100000 | | 1
i i
i {
10000 | ]
¥
i/
/
1000 + ag=ay |f quncol ; aq uncol]
100 | ]
10 ¢ q:;,r" e q=4 ]
1
4 5




(a-a%)

COLORING

3 Coloring

10 —
N=105 —
N=2.10;
(028 N=4.10
1 T
Oyt e
oy
0.1 ¢ 1
0.01 3-coloring, a* = 2.275
0.001

10

100

1000 10000 100000
t

le+06 le+07



a-a*

10

0.1

0.01

COLORING

4 Coloring

4 Coloring, o* = 4.315

-0.25

t

100

1000 10000 100000 le+06 1e+07
t



CONCLUSION

Thinking in terms of pseudo-energy landscapes one can make use of
the intuition developed for the energy landscapes:

» Are the configurations reached after a pressure quench the most
abundant?

» J-point as an inherent structure: relation to the ideal glass state.
» Effect of relaxation on an infinite-pressure state

» ... and also understand the unreasonable effectiveness of
unsophisticated constraint optimization algorithms.



A Model (hopeful ‘Rosetta stone’ to make contact
with granular and two level system literature)




The unreasonable effectiveness of unsophisticated
algorithms in constraint optimization problems

why is it so easy to go beyond the dynamic transition point oy and
even oy

The relation between the ‘J-point’, Random Close
Packing, the Mode-Coupling and the Kauzmann
point
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A given configuration
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PACKING

Displace particles to resatisfy
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GRAPH COLORING

A well colored graph




GRAPH COLORING

add one link




GRAPH COLORING

Modify nearby configurations to resatisfy
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Energies as a function of p




A Sketch
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g(w) model.
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