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It is shown that the same arguments which lead to black-hole evaporation also predict
that a thermal spectrum of sound waves should be given out from the sonic horizon in
transsonic fluid flow.

PACS numbers: 04.60.+n, 04.80.+z, 47.90.+a, 97.60.Lf

Black-hole evaporation" is one of the most
surprising discoveries of the past ten years.
Black holes emit thermal radiation with a tem-
perature given by ltc'/Snk GM, and thus seem to
combine quantum mechanics and gravitation to
produce thermodynamics. This theoretical re-
sult suffers, however, from certain difficulties.
In particular, the result is derived under the
assumptions that the quantum fields in question
do not affect the gravitational field in which they
propagate, that the gravitational field itself is
unquantized, and that the wave equation for the
quantum field is valid on al~ scales. Any break-
down of these assumptions would seem to imply
the breakdown of the evaporation process. A
further difficulty is that the experimental investi-
gation of the phenomenon would seem to be vir-
tually impossible, and would depend on the highly
unlikely discovery of a small black hole (a relic
of the initial stages in the life of the universe
perhaps)' near the Earth.
However, a physical system exists which has
all of the properties of a black hole as far as the
quantum thermal radiation is concerned, but in
which all of the basic physics is completely under-
stood. In this system one can investigate the ef-
fect of the reaction of the quantum field on its
own mode of propagation, one can see what the
implications are of the breakdown of the wave

equation at small scales on the evaporation proc-
ess, and one might even contemplate the experi-
mental investigation of the thermal emission
process.
The model of the behavior of quantum field in a
classical gravitational field is the motion of sound
waves in a convergent fluid flow. The equations
of motion for an irrotation31 fluid are given by4

gx v=0
p[sv/Bt+ (v ~ V)v] = —Vp —pVC,
Sp/St+V. (pv) =0,

where p is the pressure which is assumed to be
a function of p, and 4 is an external force poten-
tial. Defining

g(() = f (p') '[e(p')«p'1&p',
$ = in p,
v=Vg,

we have

Bg/st+ —,'v ~ v+g($) + 4 =0

&$/Bt+v V)+V v =O.

Linearizing these equations about some solution
yo, vo = V/0, and (0, with

k=4+8, a=4. +0,
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special surface. That last bit of sound emitted just before the fish goes through
that surface will take an infinite time to get out, since the net outward velocity of
the sound goes to zero as that surface is approached.

It is also clear that the fish itself, as it goes through that surface, will not note
anything unusual—the velocity of the water will not cause anything unusual to
happen in the local physics around that sonic horizon.

These phenomena are analogous to what happens in a black hole. If something
falls through the horizon of a black hole, it can never again send out a signal to
the outside world. As it falls into the black hole, the light takes longer and longer
to get out, with the light emitted just as one falls through the horizon taking an
infinite time. One can never see anything fall into the black hole, just as one can
never hear anything fall into the sonic analogue.

But the analogy turned out to be better than just one for making such a hand-
waving description of a black hole. In 1980, while teaching a course on fluid
mechanics, I realized that the analogy was much better than I had thought
(Moncrief 1980; Unruh 1981). If one looks at the equations of motion of sound
waves in such a flowing background fluid, those equations are exactly those of a
scalar field in a non-trivial metric:
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In the fluid case, f is the potential for the small perturbations in the
irrotational fluid flow, with dvZVf, and the metric

gtt Z r2ðc2Kjvj2Þ; ð1:2Þ

gti Z r2vi; ð1:3Þ

gijZ r2ðdijKviv jÞ; ð1:4Þ

where r is the density of the fluid in that background flow; vi are the components
of the velocity of the background fluid flow; and c is the velocity of sound.

While this analogy is classical, a direct result of the Euler–Lagrangian equations
for hydrodynamic flow, it should also extend to the quantum regime. That is, if we
are doing quantum fields on a classical background space–time, one should be able
to model that by looking at the quantum fluctuations of sound waves (phonons) in
a background fluid flow. The best known of the results of quantum field theory on a
background space–time was Hawking’s (1974, 1975) discovery that a quantum
instability near the black hole horizon resulted in the black hole evaporating—
emitting a constant stream of radiation with a temperature of

T Z
Zc3

8pkGM
; ð1:5Þ

where k is Boltzmann’s constant. The same derivation showed that a sonic horizon
should emit a thermal spectrum of phonons, quantized sound waves.

There were, however, problems with his derivation. The first is that in
calculating the temperature, one finds that the particles emitted at time t after
the black hole forms are the result of the amplification of vacuum fluctuations of
frequency around c3=GMetc

3=GM . This means that the radiation emitted a second
after the formation of a solar mass black hole arises from vacuum fluctuations
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Acous+c Waves with flow as a Gravity Analogue
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Integrate the 2D equa+on along y leads to the exact expression:
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Acous+c Waves with flow as a Gravity Analogue
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Acous+c Waves with flow as a Gravity Analogue
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Acous+c Waves with flow as a Gravity Analogue
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Acous+c Waves with flow as a Gravity Analogue
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No propaga+on
against the flow 

Acous+c Waves with flow as a Gravity Analogue
ScaJering problem

Wave Propaga+on in Complex and Microstructured Media 
Cargèse, Corsica · August 20th - 30th, 2019 

Y. Aurégan: Guided Waves & Flow Interac5ons 43

White hole
(Deaf hole)

scaHered waves
incident 
waves

b(x) =
b1 + b2

2
+

b2 � b1
2

tanh

✓
x

db

◆

cS(b1) =
1p

1 + b1
< M <

1p
1 + b2

= cS(b2)

x

Flow

S2

N2

b2

b1

A+
1

N1

A+
2

A�
2

supersonic subsonic

0

@
a+2
n2

s2

1

A =

2

4
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