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This short course aims at    
 

 Explaining the asymptotic homogenization method 
  through the physical principles behind the up-scaling process 
   for deriving (un)-conventional macro-description in dynamics  

 
This will be done  
 

 Considering periodic elastic composites   
   and in other physical contexts in periodic media 

   with illustration  by experiments on prototypes 
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Part 1 : Homogenization and Inner Resonances 
 

  Generalities on homogenization 
  Elasto-dynamics of composites 
  Enriched elasto-dynamics   
  Inner resonance in elastic composites 

 
Part 2 : Inner Resonances in Different Physical Contexts 
 

  Reticulated media 
  Media reinforced by fibers  
  Acoustics of porous media 
  Reinforced plates 
  Resonant interface 

 
Concluding remarks  
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1 -Introduction to Homogenization �
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From local to global description 

Key Issue  
  Escape from the detailed description
while 

Keep the qualitative and quantitative features
 
Scale separation is necessary, … and sufficient  (Auriault, 80) 

1 - Long  wavelength  Λ  = 2πL Λ L

2 - Medium = {ERV} ERV [l] l/L = ε << 1
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Intuitive approach 
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Guide line  

 Scale separation  l/Λ = ε << 1  Macro - Continuum physics   

ERV <==> Particle not too small (representative)
not too large (infinimum % L)

Global description arises from the local physics

ERV physics Condensed in Nature of the macro-description
Macro-parameters 
Relevant information % L

 
Homogenization method    [Sanchez-Palencia, 80], [Auriault, 80] 

Rigorous mathematical approach of the two requirements

ERV  Ω-Periodic media 

Scale separation  ε  = l/L << 1
Asymptotic expansions
Two scales method
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Homogenization method 

Two-scale variables

Macro : x/L Micro : x/l =   x/(Lε) 
x y = x/ε  

     
Two-scale expansions

 è  ∂  --> ∂x + ε-1∂y

 è y-Ω periodic expansions

q(x,y)  = q0(x,y) + εq1(x,y) + ε2q2(x,y)  + …
 

Resolution 

Rescaled Equations EQx,y(Expansions(x,y)) = 0  
∀ ε --> 0  Σ εq EQq x,y (-) = 0 
Separate ε power     EQq

x,y (-) = 0 
Series of local problems (y-periodic) 
 Macro description (x)
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About convergence 
Different approaches 
 

 Mathematics 
 
Essential for physics 
 

 Enables the use of the homogenized models  for real material with l finite  
 

 Practical interest : much wider applicability than ε << 1 ; è ε < ½  
 
Up to now systematically prouved with 

   

 Scale separation, linear physics, at given scaling 
 

 Physically sound : The phenomena tends to stay identical as L is enlarged 
 
Thus 
 

 The convergence is of interest, ... 
  
 but pathological situations with no convergence would be even more 

 
 if any... 
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About periodicity - At long wavelength 
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Real medium VER     Long wavelength   
 

 
Fictious periodic media  

Periodized VER    Same reponses for long wavelength 
 

? 

Homogenisation 

Periodicity Ω vs statistical invariance (ERV) 



Relaxed periodicity - At long wavelength 
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Parametrized periodicity Ω (Caillerie, 2003, 2012)  

è Large deformations 



About periodicity - Short wavelenght 

At Short wavelength : very distinct responses 

Periodic  Non Periodic  



Global descriptions in dynamics 
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Classification  based on λ /ERV  
 
 
 
 
 
 
    Large scale dynamics    Local variations 

  
   Local statics      Local dynamics  

 

             
 

    
   Large scale dynamics 
     
  «   Local dynamics  

 
      
   Co-dynamics » regime 

 
    Inner resonance 

D
iff

ra
ct

io
n 

Fl
oq

ue
t-

Bl
oc

h 
 M

od
ul

at
io

n 
 



Floquet-Bloch Waves 

Elastodynamics    a Ω0/l0-periodic, ρ constant  
 

  

 
Bloch waves   Wave number : k   
 

  
 
Shifted operator 
 

  

 
Spectral resolution 

         Eigenvalues – Dispersion 
 

       Bloch modes & Bloch waves 
 

 Periodic    Pseudo-periodic  Orthogonal basis 
16 



Floquet-Bloch Waves  /  Homogenization 

Longwave length & Low frequency  :  k à εk ; ω à εω

  
Two scale formulation  x = εy    
 
 
 
 
 

 
Expansion + Rigorous  analysis ( Turbe  & Wilcox 1984) 
 
 
 
At the limit ε à 0 Homogenization of 

  
    Small phase shift   è Variation at large scale 
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 Long Wavelengths  
---- 

Moderately Contrasted Composites 
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λ /VER > 1 



Scale separation 

 
Long  wavelength  Λ 
 

 Λ >> l     ERV [l]     
 

 ε = 2π l/Λ <<1    Macro dynamics  
   

 
è Quasi static local regime   
 

 Scale separation for  U0   
          



Elasto-dynamics – Harmonic regime ω

 σ = a(y):e (u)  div[σ] + ω2ρu = 0    

E(u) + ω2ρ(y) u = 0    E(u) = div(a:e (u)) a(y) ; ρ(y) Ω-periodic 

Two space variables x , y = ε-1x

E è Exy(u)  = ε-2 Ey -2(u)  + ε-1E-1(u)  + E0(u)  

Ey
-2(u) = divy[a(y):e y(u)]

E-1(u) = divy[a(y):e x(u)] + divx[a(y):e y(u)]

E0(u) = divx[a(y):e x(u)]  +  ω2ρ(y) u  Macro dynamics 

Homogenization   



Governing equations (x,y)  

 
 
 
 
 
Dominant order – periodic in y 
 
 
 
 
 
 

è Local quasi-statics    

Homogenization - 1   

ΩC

ΩR

Γ

&  Ω -periodicity 



Local fields at next order 
 
 
 
 
  
è  Local quasi-statics 

  
 Forcing by ex(U0) 

 
 Lax-Milgram   

 
 By linearity 

 
 
 
  
 

Homogenization - 2   

ΩC

ΩR

Γ

&  Ω -periodicity 

<ξ> = 0 



 
Macroscopic description at leading order 
 
 

  
  

 
 Mean balance  
  
 Divergence theorem  + periodicity 

 
 è Macro conventional elasto-dynamics (x!)  

Homogenization - 3   

ΩC

ΩR

Γ

&  Ω -periodicity 

Elasto-static stiffness 

<ρ>    Mean density 



Moderately 
 Contrasted 

λ / ERV <1 
Highly 

 Contrasted  λ /ERV > 1 

Classic  
Elasto-dynamic 

Learning : Standard Elastodynamics 


