

Institut d'études scientifiques de Cargèse

20 - 30 aout 2019

Homogenization and Inner Resonances in Different Physical Contexts

C. Boutin

ENTPE – CeLyA- CNRS 5513

Objectives

This short course aims at

Explaining the asymptotic homogenization method through the physical principles behind the up-scaling process for deriving (un)-conventional macro-description in dynamics

This will be done

Considering periodic elastic composites and in other physical contexts in periodic media with illustration by experiments on prototypes

Keywords

Homogenisation, Composites, Inner resonance, Metamaterials

Content

Part 1 : Homogenization and Inner Resonances

Generalities on homogenization Elasto-dynamics of composites Enriched elasto-dynamics Inner resonance in elastic composites

Part 2 : Inner Resonances in Different Physical Contexts

Reticulated media Media reinforced by fibers Acoustics of porous media Reinforced plates Resonant interface

Concluding remarks

Content

Part 1 : Homogenization and Inner Resonances

Generalities on homogenization

Elasto-dynamics of composites Enriched elasto-dynamics Inner resonance in elastic composites

Part 2 : Inner Resonances in Different Physical Contexts

Concluding remarks

1-Introduction to Homogenization

E. Sanchez Palencia, Nonhomogeneous media and vibration theory, Lectures notes in Physics, 127, Berlin: Springer-Verlag, 398p. (1980)

From local to global description

Key Issue

Escape from the detailed description while Keep the qualitative and quantitative features

Intuitive approach

Guide line

Scale separation	$l/\Lambda = \varepsilon << 1$	Macro - Continuum physics

ERV <==> Particle	not too small (representative)
	not too large (infinimum % L)

Global description arises from the local physics

ERV physics Condensed in	Nature of the macro-description
	Macro-parameters
	Relevant information % L

Homogenization method

[Sanchez-Palencia, 80], [Auriault, 80]

Rigorous mathematical approach of the two requirements

ERVΩ-Periodic mediaScale separation $\boldsymbol{\varepsilon} = l/L << 1$
Asymptotic expansions

Two scales method

Homogenization method

Two-scale variables

Macro : x/L Micro : $x/l = x/(L\epsilon)$ x $y = x/\epsilon$

Two-scale expansions

Resolution

Rescaled Equations $EQ_{x,y}(\text{Expansions}(\mathbf{x},\mathbf{y})) = 0$ $\forall \varepsilon \dashrightarrow 0$ $\sum \varepsilon^q EQ^q_{x,y}(-) = 0$ Separate ε power $EQ^q_{x,y}(-) = 0$ Series of local problems (y-periodic)Macro description (x)

About convergence

Different approaches

Mathematics

Essential for physics

Enables the use of the homogenized models for real material with *l* finite Practical interest : much wider applicability than $\varepsilon \ll 1$; $\rightarrow \varepsilon \ll \frac{1}{2}$

Up to now systematically prouved with

Scale separation, linear physics, at given scaling

Physically sound : The phenomena tends to stay identical as L is enlarged

Thus

The convergence is of interest, ...

but pathological situations with no convergence would be even more

if any...

About periodicity - At long wavelength

Periodicity Ω vs statistical invariance (ERV)

Relaxed periodicity - At long wavelength

Parametrized periodicity Ω (Caillerie, 2003, 2012)

→ Large deformations

About periodicity - Short wavelenght

At Short wavelength : very distinct responses

Periodic

Non Periodic

Global descriptions in dynamics

Floquet-Bloch Waves

$$-\frac{\partial}{\partial y}\left(a(y)\frac{\partial u}{\partial y}\right) = \rho\,\omega^2 u$$

Elastodynamics a Ω_0/l_0 -periodic, ρ constant $\mathcal{A}(u) =
ho \, \omega^2 \, u \qquad ext{with} \qquad \mathcal{A} = -rac{\partial}{\partial y} \left(a(y) rac{\partial}{\partial y}
ight)$ **Bloch** waves Wave number : k $\varphi(y) = e^{iky}\phi(y)$ with $\phi(y) \Omega$ -periodic $0 \leq k \leq 2\pi/l_0$ **Shifted operator** $\mathcal{A}_k(\phi) =
ho \, \omega^2 \, \phi \qquad ext{with} \qquad \mathcal{A}_k = -(rac{\partial}{\partial u} + ik) \left(a(y) (rac{\partial}{\partial u} + ik)
ight)$ **Spectral resolution** Eigenvalues – Dispersion $0 \leq \omega_1^2(k) \leq \cdots \leq \omega_N^2(k) \leq \ldots$ Bloch modes & Bloch waves $\{\phi_N(k,y)\}$ $\{\varphi_N(k,y)\}$ Orthogonal basis Periodic Pseudo-periodic

Floquet-Bloch Waves / Homogenization

Longwave length & Low frequency : $k \rightarrow \epsilon k$; $\omega \rightarrow \epsilon \omega$

$$\begin{aligned} \mathcal{A}_{\varepsilon k}(\phi) &= \rho \, \varepsilon^2 \omega^2 \, \phi \quad \text{with} \quad \mathcal{A}_{\varepsilon k} = -(\frac{\partial}{\partial y} + i\varepsilon k) \left(a(y)(\frac{\partial}{\partial y} + i\varepsilon k) \right) \\ \text{Two scale formulation } \mathbf{x} &= \varepsilon \mathbf{y} \\ u &= e^{i\varepsilon ky} \phi_{\varepsilon k}(y) = e^{ikx} \phi_{\varepsilon k}(y) \quad \frac{\partial}{\partial y} e^{i\varepsilon ky} = \left(i\varepsilon k \right) e^{i\varepsilon ky} = i\varepsilon k e^{ikx} = \left(\varepsilon \frac{\partial}{\partial x} e^{ikx} \right) \\ \mathcal{A}_{\varepsilon k}(u e^{-ikx}) &= \rho \, \varepsilon^2 \omega^2 \left(u e^{-ikx} \right) \quad \text{with} \quad \mathcal{A}_{\varepsilon k} = -\left(\frac{\partial}{\partial y} + \varepsilon \frac{\partial}{\partial x} \right) \left(a(y)(\frac{\partial}{\partial y} + \varepsilon \frac{\partial}{\partial x}) \right) \end{aligned}$$

Expansion + Rigorous analysis (Turbe & Wilcox 1984)

$$ue^{-ikx} = \phi_{\varepsilon k}(y) = \phi_o(x) + \varepsilon \phi_0'(x,y) + \dots$$

At the limit $\varepsilon \to 0$ Homogenization of $\mathcal{A}(u) = e^{ikx} \mathcal{A}_{\varepsilon k}(ue^{-ikx}) = \rho \varepsilon^2 \omega^2 u$

Small phase shift \rightarrow Variation at large scale

Content

Part 1 : Homogenization and Inner Resonances

Generalities on homogenization Elasto-dynamics of composites Enriched elasto-dynamics Inner resonance in elastic composites

Part 2 : Inner Resonances in Different Physical Contexts

Concluding remarks

Long Wavelengths

Moderately Contrasted Composites

E. Sanchez Palencia, Nonhomogeneous media and vibration theory, Lectures notes in Physics, 127, Berlin: Springer-Verlag, 398p. (1980)

Scale separation

Long wavelength $\boldsymbol{\Lambda}$

 $\Lambda >> l$

ERV [*l*]

 $\epsilon = 2\pi \; l/\Lambda <<\!\!\!<\!\!\!1$

Macro dynamics

→ Quasi static local regime

Scale separation for U^0

Homogenization

Elasto-dynamics – Harmonic regime ())

$$\sigma = a(\mathbf{y}):e(\mathbf{u})$$
 $\operatorname{div}[\sigma] + \omega^2 \rho \mathbf{u} = 0$

 $E(u) + \omega^2 \rho(\mathbf{y}) u = 0 \qquad \qquad E(u) = \operatorname{div}(a:e(u))$

 $a(\mathbf{y}); \rho(\mathbf{y}) \Omega$ -periodic

Two space variables x , $y = \varepsilon^{-1}x$

$$E \Rightarrow E_{xy}(u) = \varepsilon^{-2} E_{y}^{-2}(u) + \varepsilon^{-1} E^{-1}(u) + E^{0}(u)$$
$$E_{y}^{-2}(u) = \operatorname{div}_{y}[a(y):e_{y}(u)]$$
$$E^{-1}(u) = \operatorname{div}_{y}[a(y):e_{x}(u)] + \operatorname{div}_{x}[a(y):e_{y}(u)]$$
$$E^{0}(u) = \operatorname{div}_{x}[a(y):e_{x}(u)] + \omega^{2}\rho(y) u$$

Macro dynamics

Homogenization - 1

Governing equations (x,y)

$$\mathbf{u} = \mathbf{u}^{(0)}(\mathbf{x}, \mathbf{y}) + \varepsilon \mathbf{u}^{(1)}(\mathbf{x}, \mathbf{y}) + \varepsilon^2 \mathbf{u}^{(2)}(\mathbf{x}, \mathbf{y}) + \cdots , \quad \mathbf{u}^{(i)}(\mathbf{x}, \mathbf{y}) \,\Omega - \text{periodic in } \mathbf{y}$$

Dominant order – periodic in y

$$\begin{cases} \operatorname{div}_{y}(\mathbf{a} : \mathbf{e}_{y}(\mathbf{u}^{0})) = 0 & \operatorname{in} \Omega & (\varepsilon^{-2}) \\ \left[\mathbf{a} : \mathbf{e}_{y}(\mathbf{u}^{0})\right] \cdot \mathbf{n} = 0 & \operatorname{over} \Gamma & \varepsilon^{-1} \\ \left[\mathbf{u}^{0}\right] = 0 & \operatorname{over} \Gamma & \& \Omega \operatorname{-periodicity} \end{cases}$$

→ Local quasi-statics $\mathbf{u}^{\mathbf{0}}(\mathbf{x}, \mathbf{y}) = \mathbf{U}^{\mathbf{0}}(\mathbf{x})$

Homogenization - 2

<ξ> = 0

Local fields at next order

$$\begin{cases} \operatorname{div}_{y}(\mathbf{a} : (\mathbf{e}_{y}(\mathbf{u}^{1}) + \mathbf{e}_{\mathbf{x}}(\mathbf{U}^{0})) = 0 & \operatorname{in} \Omega & (\varepsilon^{-1}) \\ \left[\mathbf{a} : (\mathbf{e}_{y}(\mathbf{u}^{1}) + \mathbf{e}_{\mathbf{x}}(\mathbf{U}^{0}))\right] \cdot \mathbf{n} = 0 & \operatorname{over} \Gamma & (\varepsilon^{0}) \\ \left[\mathbf{u}^{1}\right] = 0 & \operatorname{over} \Gamma & (\varepsilon^{1}) \end{cases}$$

& Ω -periodicity

- ➔ Local quasi-statics
 - Forcing by $e_x(U^0)$
 - Lax-Milgram

By linearity

$$\mathbf{u^1}(\mathbf{x},\mathbf{y}) = \boldsymbol{\xi}(\mathbf{y}).\mathbf{e_x}(\mathbf{U^0}) + \mathbf{U^1}(\mathbf{x})$$

Homogenization - 3

Macroscopic description at leading order

$$\begin{aligned} \operatorname{div}_{y}(\boldsymbol{\sigma}^{1}) + \operatorname{div}_{x}(\mathbf{a}:(\mathbf{e}_{y}(\mathbf{u}^{1}) + \mathbf{e}_{x}(\mathbf{U}^{0})) &= -\omega^{2}\rho\mathbf{U}^{0} \quad \text{in } \Omega_{c} \\ & \left[\boldsymbol{\sigma}^{1}\right].\mathbf{n} &= 0 \quad \text{over } \Gamma \\ & \& \ \Omega \text{ -periodicity} \end{aligned}$$

Mean balance

$$| \cdot \rangle = \frac{1}{|\Omega|} \int_{\Omega} \cdot \, \mathrm{d}\Omega$$

Divergence theorem + periodicity

 $\langle \operatorname{div}_y(\boldsymbol{\sigma}^1) \rangle = 0$

→ Macro conventional elasto-dynamics (x!)

$$\operatorname{div}_{x}(\mathbf{C}^{0}:\mathbf{e}_{x}(\mathbf{U}^{0})) = -\omega^{2} \langle \rho \rangle \mathbf{U}^{0}$$

 $\mathbf{C}^0 = \langle \mathbf{a} : (\mathbf{e}_y(\boldsymbol{\xi}) + \mathbf{a} \rangle$ Elasto-static stiffness

<ρ> Mean density

Learning : Standard Elastodynamics

