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PACAM XI - 2010 

How to reach high contrasts ? 
Basic/implicit  assumptions     

 
Contrast of properties : O(1)  Inner Geometry : O(1) 
 

Possible candidates 

Contrast  ≠ O(1) 
       Highly contrasted continuous media 

Geometry : O(1)     
 
 
Contrast  : O(1)  

      Discrete Reticulated media 
Geometry ≠ O(1)       
 



Specificity of reticulated systems   

Geometric contrast 
Truss of beams or plates  : Structural dynamics of buildings 
 
 

 
 
 
 
 

 
Mechanical contrast :  Bending versus Extension   

Consequences 

Inner resonance 
& Enriched local kinematics   
 
Chesnais, Boutin, Hans, JASA, 2012 

 



Co-dynamic regime ?  

Local Quasi-statism 
 

 l << λf << λc 
 

 

Classical Mechanics 

Local Dynamics 
 

λf ≅ l << λc   
Inner resonance in bending 

 
Non-conventional Mechanics 

 

Compression  N(u ; l/λc)   

Bending  T, M(v ; θ ; l/λf)   

 Local state 

 Homogenization of discrete media …. 



Non-conventional longitudinal vibrations 

Local Dynamics   λf ≅ l << λc   

 Bending inner Resonance 

   
 
Apparent mass Λ(ω)! 
 
 

       
 

      Alourdissement 

      Allégement 

 



Non-conventional wave features 

Dispersion and band-gap   

 V2(ω) = Ex/Λ(ω)      

Band gaps  Λ(ω) = ∞      

Odd bending modes of Horizontal beams 



Non-conventional Modal response 

Modal analysis  

 Clamped-free structure =  

 V(x) = Vsin(α x)       

   
  

 
 
 
H 
C 

=!      =!  =!  =!  



Band–gap versus modes 

Transfer function        

Bandgaps   : no  transmisson 

With 0 and 2% damping  



Similar to composites     ε = 2π l/Λ   ≈ λR/ ΛC    
 

Carrying constituent (connected)     &  Resonant constituent 
 

 Forcing motion    Forced regime 
 
High contrast     
 
Atypical mass     High dispersion and band gaps 
 

    
 

But 
 

Versatile Resonant constituent   Depends on the  direction of the wave  
 

Learnings 
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Dynamics of soft soils reinforced by piles 



PACAM XI - 2010 

 Transverse dynamics  of reinforced composites 
   

J. Soubestre, C. Boutin, J. Mech of Mat, 2012 



PACAM XI - 2010 

Physical analysis 
Scale separation 

 

l/H = ε << 1  2D-In plane Periodicity 
 

Shear   : Soil 
      

 
Bending : Pile network  

  
 
 
 
 
Reinforced media 
 

  Inertia  balanced by Soil & Piles 
 
 

  Shear / Bending  Coupling   EI/H3 ≅ GS/H  
 

  G ≅ EI/SH2 ≅ E(l/H)2 ≅ Eε2  



PACAM XI - 2010 

Homogenization Process   

 Formalism   
 

 Space variables  x1 ; y2  = ε x2 ;  y3  = ε x3 
 

 Parameter  µ µm = ε2µp 
 

 Motions 
   Normal 
 Strain, Stress  Out of plane  
   In plane        

 
 Expansions   
 

 In ε2 2powers 
 
 Balance equations 
 

  Jump of ε  between In plane and Axial balance 
 
 Resolutions order by order   



PACAM XI - 2010 

Macroscopic transverse dynamics 

Harmonic behaviour of the Soil - Piles system 
  

 
 
 
  

Analytical !  Involves multiple interactions   
 
Second gradient behaviour at leading order  

  
Non local in space    ≈ Sandwich beam 

 
Rotation of beams  but not Cosserat ! 
 
Pile motion  = Soil motion   
 
Pile rotation    Shear in soil  



Experiments 

  Shaking Table (Blade) - Bristol University   
 
  Series project (EU) 



Design of the specimen 

 Conditions for full shear-bending coupling  
 

EpIp U(4)+ CS U(2) = < ρ > ω2 U   C ≈ µm   Specimen high  = H 

EpIp /H4 = µmS /H2 = < ρ > ω2  
 

 Sample 
 

Foam matrix µm = 30 kPa 
 
Steel hollow piles  Ep = 21 Gpa    

      
Dimensions  H = 1.25m 

     l = 25 cm 
 
Configurations  35, 17, 9, 0 piles    

    Clamped - Free 
    Hinge ; Sliding   
      



Phenomena - Instrumentation 

Eigen frequency - Homogeneity  16 Accelerometers (pile & foam) 
 
 Bending of piles    36 Gauges on 6 piles 
 
 Mode shape     10 LVDT 



White noise(s) Response 

Linearity - Repetability 

Foam (2) Piles (3) 

1 

2 

1.5 

Fundamental frequency - Foam / Pile homogeneity 



Eigen frequency vs Pile concentration 

Experiments 

Neglected bending 

Shear Bending Model  Eigen frequency 
 
 
 
 Lower pile concentration 

 
E I  è   C ≈ G è 
E I /S î  < ρ > î 
 
Neglected bending 
 
 C ≈ G è 
< ρ > î  ωì 
 
Shear Bending Model 
 
C ≈ G è 
EpIp /S î  ω î 
< ρ > î   Clamped - Free 



Fundamental mode - Moment distribution 

Pile response   (6.25Hz) 
 

+ - : Bending 
 
Moment inversion B/M 
 
Zero Top moment 
 

 
Strain / Moment / Mode shape 

e(x) ∼ M(x) ∼ Φ’’(x)  

Φ’’(x) 

Φ(x) 

✖ 

✖ 

✖ ✖ ✖ 

✖ 

✖ ✖ 

✖ 

Bending Shear 
Bending 

+ 
Shear 

		
	

	

	

B 

M 

T 
Gauge records 

Clamped - Free 



CF CS 

HS HF 

	T	

	B	
	

	M	
	

≠ Boundary conditions Clamped - Free 
 
Clamped - Sliding 
 
Hinge - Free 
 
Hinge - Sliding 

✖ ✖ 

✖ ✖ 

✖ 

✖ ✖ 

✖ 

✖ 

✖ ✖ 

✖ 

CF CS 

HS HF 



Macro-dynamics in compression 

Axial balance    
       Beam 
        y - Periodicity 
       Matrix 

 
 
Integration    
 
∂ < σ1

11 > /∂x1 = <Pρ +mρζ(y, ω)>ω2U1  

< σ1
ii > = -Ep∂U1/∂x1  

 
 
Meta material    

Non local in time   Local in space 
 
Apparent density   <Pρ +mρζ(y, ω)>  
 
Band gaps  : Eigen frequencies   

∂ Pσ1
11/∂x1 + divy([Pσ2]) = -Pρω2U1

divy ([mσ2]) = - mρω2 ζ(y, ω)U1



Combined geometric and mechanical contrasts 
 

Multi faceted behaviour 
  

 
Second gradient behaviour     
 

SH wave 
 

Wave dispersion ; NO band gaps 
 
 

Inner resonance behaviour 
 

P axial wave 
 
Wave dispersion and  band gaps 
 
 

Standard elastic behaviour 
 

SV Wave 
 
NO Wave dispersion and NO band gaps  

 

Learnings 


