Content

Part 1 : Homogenization and Inner Resonances

Generalities on homogenization Elasto-dynamics of composites Enriched elasto-dynamics Inner resonance in elastic composites

Part 2 : Inner Resonances in Different Physical Contexts

Reticulated media Media reinforced by fibers Acoustics of porous media Reinforced plates Resonant interface

Concluding remarks

Content

Part 1 : Homogenization and Inner Resonances

Generalities on homogenization Elasto-dynamics of composites Enriched elasto-dynamics Inner resonance in elastic composites

Part 2 : Inner Resonances in Different Physical Contexts

Reticulated media

Media reinforced by fibers Acoustics of porous media Reinforced plates Resonant interface

Concluding remarks

How to reach high contrasts ?

Basic/implicit assumptions

Contrast of properties : O(1) Inner Geometry : O(1)

Possible candidates

Specificity of reticulated systems

Geometric contrast

Truss of beams or plates : Structural dynamics of buildings

Mechanical contrast : Bending versus Extension

Consequences

Inner resonance

& Enriched local kinematics

Chesnais, Boutin, Hans, JASA, 2012

Co-dynamic regime?

Local Quasi-statism

 $l << \lambda_{\rm f} << \lambda_{\rm c}$

Local **Dynamics**

 $\lambda_{\rm f} \cong l \ll \lambda_{\rm c}$ Inner resonance in bending

Classical Mechanics

Non-conventional Mechanics

Homogenization of discrete media

Non-conventional longitudinal vibrations

Local Dynamics

$$\lambda_{\rm f} \simeq l << \lambda_{\rm c}$$

Bending inner Resonance

$$E_{x}\frac{d^{2}U_{x}}{dx^{2}} + \rho\left[\frac{A_{m}}{\ell_{p}} + \frac{A_{p}}{\ell_{m}}f\left(\frac{\omega}{\omega_{f1}}\right)\right]\omega^{2}U_{x} = 0$$

Apparent mass $\Lambda(\omega)!$

$$f(\frac{\omega}{\omega_{f1}}) = \frac{8}{3\pi\sqrt{\frac{\omega}{\omega_{f1}}} \left[\operatorname{coth}\left(\frac{3\pi}{4}\sqrt{\frac{\omega}{\omega_{f1}}}\right) + \operatorname{cot}\left(\frac{3\pi}{4}\sqrt{\frac{\omega}{\omega_{f1}}}\right) \right]}$$

Non-conventional wave features

Dispersion and band-gap

 $V^{2}(\omega) = E_{x}/\Lambda(\omega)$

Band gaps $\Lambda(\omega) = \infty$

Odd bending modes of Horizontal beams

Non-conventional Modal response

Band-gap versus modes

Transfer function

Bandgaps : no transmisson With 0 and 2% damping

> Déformée à 52 Hz

Learnings

Similar to composites

Carrying constituent (connected) & Forcing motion High contrast Atypical mass $\varepsilon = 2\pi l / \Lambda \approx \lambda_{\rm R} / \Lambda_{\rm C}$

Resonant constituent Forced regime

High dispersion and band gaps

But

Versatile Resonant constituent

Depends on the direction of the wave

Content

Part 1 : Homogenization and Inner Resonances

Generalities on homogenization Elasto-dynamics of composites Enriched elasto-dynamics Inner resonance in elastic composites

Part 2 : Inner Resonances in Different Physical Contexts

Reticulated media Media reinforced by fibers Acoustics of porous media Reinforced plates Resonant interface

Concluding remarks

Dynamics of soft soils reinforced by piles

Transverse dynamics of reinforced composites

J. Soubestre, C. Boutin, J. Mech of Mat, 2012

Physical analysis

Scale separation

 $l/H = \varepsilon << 1$ 2D-In plane Periodicity

Shear : Soil

$$\tau = G \frac{\partial U}{\partial x} \qquad \qquad \frac{\partial \tau}{\partial x} = -\rho_s \frac{\partial^2 U}{\partial t^2}$$

Bending : Pile network

$$\begin{split} M &= -EI \frac{\partial^2 U}{\partial x^2} \qquad T - \frac{\partial M}{\partial x} = 0 \\ & \frac{\partial T}{\partial x} = -\rho_p \frac{\partial^2 U}{\partial t^2} \end{split}$$

Reinforced media

Inertia balanced by Soil & Piles

$$O(EI\frac{\partial^{3}U}{\partial x^{3}}) = O(GS\frac{\partial U}{\partial x})$$
$$EI/H^{3} \cong GS/H$$

Shear / Bending Coupling

Homogenization Process

Formalism Space variables $x_1; y_2 = \varepsilon x_2; y_3 = \varepsilon x_3$ Parameter $\mu \mu_m = \varepsilon^2 \mu_p$ Motions

Strain, Stress Of

Normal Out of plane In plane

	A_{11}	A_{12}	A ₁₃
$\underline{\underline{A}} =$	<i>A</i> ₁₂	A_{22}	A_{23}
	<i>A</i> ₁₃	A_{23}	A_{33}

Expansions

In
$$\varepsilon^{22}$$
 powers ${}^{q}\underline{u} = \sum_{i=0}^{\infty} \varepsilon^{2i} \left({}^{q}u_{\alpha}^{2i}\underline{e}_{\alpha} + \varepsilon {}^{q}u_{1}^{2i+1}\underline{e}_{1} \right) \qquad q = m, p$

Balance equations

Jump of ε between **In plane** and **Axial** balance

Resolutions order by order

Macroscopic transverse dynamics

Harmonic behaviour of the Soil - Piles system

Analytical ! Involves multiple interactions

Second gradient behaviour at leading order

Non local in space \approx **Sandwich beam**

Rotation of beams but not Cosserat !

Pile motion = Soil motion

Pile rotation Shear in soil

Experiments

Shaking Table (Blade) - Bristol University

Series project (EU)

Design of the specimen

Conditions for full shear-bending coupling

$$E_{p}I_{p} U^{(4)} + CS U^{(2)} = <\rho > \omega^{2} U \qquad C \approx \mu_{m} \text{ Specimen high } = H$$

$$E_{p}I_{p}/H^{4} = \mu_{m}S/H^{2} = <\rho > \omega^{2}$$

Sample

Foam matrix $\mu_m = 30$ kPa Steel hollow piles $E_p = 21$ Gpa Dimensions H = 1.25m l = 25 cm Configurations 35, 17, 9, 0 piles Clamped - Free Hinge ; Sliding

Phenomena - Instrumentation

Eigen frequency - Homogeneity

16 Accelerometers (pile & foam)

36 Gauges on 6 piles

White noise(s) Response

Linearity - Repetability

Eigen frequency vs Pile concentration

Fundamental mode - Moment distribution

Macro-dynamics in compression

Axial balance

$$\begin{cases} \partial^{P} \sigma^{1}{}_{11} / \partial x_{1} + \operatorname{div}_{y}([^{P} \sigma^{2}]) = -^{P} \rho \omega^{2} U_{1} \\ \operatorname{div}_{y}([^{m} \sigma^{2}]) = -^{m} \rho \omega^{2} \zeta(y, \omega) U_{1} \end{cases}$$

Integration $\partial < \sigma_{11}^1 > /\partial x_1 = <^P \rho + ^m \rho \zeta(y, \omega) > \omega^2 U_1$ $< \sigma_{ii}^1 > = -E_p \partial U_1 / \partial x_1$

Meta materialNon local in timeLocal in spaceApparent density $<^{P}\rho + {}^{m}\rho\zeta(y,\omega)>$ Band gaps: Eigen frequencies

Learnings

Combined geometric and mechanical contrasts

Multi faceted behaviour

Second gradient behaviour

SH wave

Wave dispersion ; NO band gaps

Inner resonance behaviour

P axial wave

Wave dispersion and band gaps

Standard elastic behaviour

SV Wave

NO Wave dispersion and NO band gaps

