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Aim of this work




Wave steepening

N -

=1
Ly
o
]
&

The original illustration from Stokes (1848) showing waveform steepening.



Musical Shocks

A shock wave radiating from the bell of a trumpet. Taken from Pandya, Settles &
Miller (2003, JASA).



Governing equations I

dp

— + V- =0

ou

— \v4 Vp =0,
P(at +u- U>+ p

oS

a—‘l—u VS =0.

We will take entropy to be constant everywhere, consistent with (entropy).

Perturbations about a stationary fluid:

P = po + 000(2)19/, p = po + pop’, u = cou’,

Magnitude of perturbation given by acoustic Mach number M

max ||u|| = Mcg = SPL =~ (194 + 201log,, M) dB,
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(momentum)

(entropy)



Governing equations II

Entropy is constant, so p = p(p). Expanding in powers of M,

B 0
pl=p — —=p?+0O(M>), where A=pg Pl = pocd and B =pi—
2A ap
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For a perfect gas, B/A = v — 1, where ~ is the ratio of specific heats.

Governing equations become
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Governing equations III

Would like time-harmonic exp{—iwt}, but nonlinearity gives higher harmonics. Expand as a
Fourier series in time (note: upper indices are for temporal expansion),
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Need P~ ¢ = P%* and U % = U%* for real solutions. Find P° = U9 = 0.

Governing equations become, with £ = w/co,
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Geometry
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Geometry Il

s is arc length. Vectors given by Frenet—Serret formulae

dt dn db
d_ = KN, = —kt 4+ 7b, — = —Tn
S

dqg B
ds ds

— '[;7
ds

Coordinate system x = q(s)+rcos(@ —0p)n + rsin(6 — 0p)b,
= dx = ds (t + 7 cos(8 — 0g) (( — 6()b — Kt) — rsin(6 — 6p) (1 — 96)n)
+ dr(cos(@ — 6p)n + sin(6 — 90)b)

- d9( — rsin(@ — 0p)n + rcos(6 — Ho)b),

To get an orthogonal coordinate system, take 6(, = 7(s) (Germano 1982, JFM), so that

hs =1 — Kkrcos ¢, es =t,
hy, =1, e, = cos ¢n + sin @b,

hg =, eg = — sin ¢n + cos ¢b.



Geometry III

In this coordinate system,
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Geometry IV
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Expansion in terms of straight duct modes

Follow Félix & Pagneux (2001 JASA; 2002 WM) and McTavish & Brambley (2019 JFM) and
expand spatially in straight duct modes. E.g.

Z P (s)a(s,r,0).

Modes v, satisfy the straight duct equation

- — — Ao =0, with =0,
r Or <T or ) * r2 062 T Aoy or |,.—_p

27 h
normalized so that / / Yarpgrdrdd = d,3.

0 0

The solution is Yo = CoJp (]p;z ) oS (qu — 5—7T> : with ¢ € {0,1},

with eigenvalues A\ = jpq/h (Where J} (jpq) = 0) and normalization factor C,
. —1/2
(wh? 3 (jog)) . P 0,
Ca — 5 o —1/2
<% (1_ j_> JQ(JPCI)> p>0.
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Algebral

Substituting in this expansion into the governing equations gets MESSY!

Introduce some shorthand notation (McTavish & Brambley, 2019 JFM):

U, s :/%/h «pa% drds,
a)alr] = /%/h O

27 rh
Viaypy[r(1 — Kkrcosd)] = / / %zpﬁwv r(1 — krcos ¢) drdé

Using this notation, expanding the mass governing equation gives, eventually, e.g.
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Algebra II

Expanding all governing equations in terms of straight duct modes.
Eliminate V¢ and W2, to get the FINAL governing equations (with ' = d/ds)

u' + Mp + Gu = Alu, u] + Blp, p] + E[u, p)
p' — Nu — Hp = Clu, p] + D[u, u]

In this new notation, p and w are vectors representing P¢ and U§.

M acts like a matrix, z M g%

A combines a quadratic form and a convolution,

( Z Z B’vw% byg

b=—o0 B8,y=0

We will also use the notation B = A[X, Y] to mean B[z, y] = A[Xx, Yy]. In components,

_ —b\/b
(A[X Y] aﬁw Z Aa5exa5 Ye’y
d,e=0



Can calculate explicitly coefficients, e.g.:
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Solution using impedance/admittance

Governing equations are
u’ +Mp + Gu = Alu, u] + Blp, p] + £[u, p|
p' — Nu — Hp = Clu, p] + D[u, u]

Use idea from Félix & Pagneux (2001 JASA; 2002 WM) for linear terms:
u=Yp = Y +YNY + M+ YH+GY =0

Y () is the linear admittance. Once known, reconstruct p(s) using p’ = NYp + Hp.

4. p(0) 6. p(L)




Solution using impedance/admittance

Governing equations are

u’ +Mp + Gu = Alu, u] + Blp, p] + £[u, p|

p' — Nu — Hp = Clu, p] + D[u, u]
Use idea from Félix & Pagneux (2001 JASA; 2002 WM) for linear terms:

u=Yp+ Y[p,pl = Y +YNY +M+YH+GY =0
Y(s) is the nonlinear admittance (McTavish & Brambley, 2019 JFM),
V' + YVINY, 1]+ V[I,NY] + YNY + YC[Y,I] — A[Y,Y] — B
+ YVH, ]+ V[,H] +GY +YD[Y,Y] - E[Y,I] =0

Once Y (s) and Y(s) known, reconstruct p(s) using
p' = NYp + Hp + NY[p, p] + C[Yp,p] + D[Yp, Yp]

Note that both Y (s) and )(s) are properties of the duct, and don’t depend on the sound fielc
p(s) or its amplitude M .



Exit admittance into a straight uniform duct

Eliminate u to get p”’ + NMp = 0, with solution

o
p=pT +p = Z (C;ijev‘js + cj_'vje_ikjs) :
j=1

where v; and A? are eigenvectors and eigenvalues of NM.

Want only outward propagating waves. Let E = (v, v2,...) and
A = diag(iri,iXe, .. .) with ReX; > 0 or ImA; > 0.

Then pt’ = iv/NMp® = £EAE~!pT = Nu®, with & denoting the propagation direction.

Hence u®* = Y*p®T = Y+ = N~ 1EAE~! = +iN—1v/NM.

Check: for a constant duct, Y should be constant, so
Y = —YNY =M =N"1'vNMNN"'vVNM —-M =0

By a similar argument, the nonlinear characteristic admittance )= is given by

YE[w,y] = NTEVEE e, ETy).
where
b (ETINA[YFE,Y*E] + E-!NB[E, E] - E"INYFC[Y*E, E])?"

S
pqr £idd £iAG 7 £iD




Other nonlinear generalizations

® Impedance:
p="Zu+ Zlu,u = Z=Y1, Z=-7Y[Z, 7]

® Reflection coefficient between downstream pT and upstream p— sound:
p~ =RpT + R[p™t,pT]
= R=(Y-Y ) (YT -Y)

and R=V-Y")"YYT"+Y [RR —Y[+R,I+R].

® Transmission coefficient across the duct:
p(L) = T(L)p(0) + T (L)[p(0), p(0)]
= T = NYT +HT
and 7' = (NY +H)T + NY[T,T] + C[YT,T] + D[YT, YT].



Curved cylinder (linear)




Curved cylinder (M = 0.05)




Curved cylinder (M = 0.10)




Curved cylinder (M = 0.15)




Exponential Horn
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Helix M = 0.05 7h = 0.14




0.10 7h = 0.14

Helix M =
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