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The structures is prestressed continuous hollow box-girder bridge
launched by segmental construction technique (over head method).
The cantilever launching gantry can move along the viaduct.
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Two-dimensional beam as a multi-structure

The S’Adde bridge in Macomer
7 Lower-dimensional model

tum ur the dispersion equations

s ams
Structural n}m

Two-dimensional beam as a multi-structure

Multi-structure — Ciarlet (1990), Kozolov et al. (1999)

Set involving subdomains of different limit dimensions con-
nected through junction regions

m First eigenfrequency: bridge deck as a rigid solid,
supporting pillars as thin flexural elastic beams.

m Higher frequencies: bridge deck elastic flexural beam
interacting with thinner supporting pillars: analysis of
Bloch waves in an infinite periodic structure.
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Iwo-dimensional beam as a multi-structure

The S’Adde bridge in Macomer .
ac age it < Lower-dime al model

Derivation of the dispersion equations
Dispersion diagrams
Structural optimisation

Two-dimensional beam as a multi-structure

unit cell

For sufficiently low frequencies

w of vibrations, the upper deck

is treated as a one-dimensional |

massive elastic beam resting on L
concentrated elastic supports T -

disposed periodically with

span length d.
Leading approximation of the

elastic displacement field

u~ u(x, tec+o(x, te, +w(x, tes,
Decoupled vibration modes
]

v+ p A(x)wn = q(x,t)
15

m Vertical bending mode [E]_.,(x)wn

Vertical fiezural vibration:
/N

~

= Horizontal bending mode [E J-(x)x]xx+p A(x)oy =p(x, t)

si=21%

—_
= — -

= Longitudinal mode [E A(x)uy|y — p A(x)uy = r(x,t)

Longitudinal vibration: f,= 0757 Hz
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The 'Adde bridge in Macomer II wo-dimensic vv}ml l\;.’vrm as a multi-structure
0 _LOW e model
Derivation of the dispersion equations
Dispersion diagrams
Structural optimisation

Green’s function

m Time-harmonic vibrations
u(x, t)ey +v(x, they +w(x, t)e; = [U(x)er + V(x)e, + W(x)e.]e!

m Equation of motion for concentrated load at x = xg

D¢ (x, x0; w) — pew?g™ (x, x0; w) = (x — xp)

where D = EJ;/A (j = x,y)
m Fourier transform g(x, xo; w) — g(k, xp; w), (x — k)

eikxo

(Dk4 _P“JZ)g(erO;w) = \/E

Low-frequency asymptotic models of bridge structures
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S'Adde bridge in Macomer I\\u—dil| NSiC n}ml beam as a multi-structure
0 er-dimensional model
vation of the dispersion equations
Dispersion diagrams
Structural optimisation

Green’s function

m Solution in the Fourier space

_ 1 eikxo 1 1 pr 1
o) = pe (v - ww) . *= ()

m Inverse transform

gTOt(X, Xojw) = (eftx\xfxo\ + ie*lu\xfxo\)

" 4Dad

Green’s function

—1
4Da3

8,303 w)=RI™ (3, x0; )] = ;5 [e™H~] + sin(afx — xo )|
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Iwo-dimensional beam as a multi-structure
Lower-dimensional model

Derivation of the dispersion equations
Dispersion diagrams

Structural optimisation

The S’Adde bridge in Macomer

Quasi-periodic Green’s function

m Define

G™ (2, x0; w, k) = ™ (x,x0;w) + Y g™ (x, %0+ nd; w)e™?
e

n#0

for 7g < x,x) < %
m It is quasi-periodic

GP* (x + md, xo; w, k) = G™(x, x0; w, k)™

m Recast in the form

G™ (x, x0; w, k) = — 1 5 [(»ﬂ\)f*-w‘oq(w,k) + el (ay(w, k) +1)

4Da
el By (0, k) el (B (w0, ) + )]

where

+oo Foo
w(wk) =Y R (0, k) = Ye @R 31 (0, K),
n=1

n=1
00 00

Brlwk)=iY oila—kynd, Balw,k) =iy eila+kynd
n=1 n=1
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o . . [wo-dimensional beam as a multi-structure
The S’Adde bridge in Macomer
© Lower-dimensional model
ivation of the dispersion equations
Dispersion diagrams

Structural optimisation

Quasi-periodic Green’s function

Configuration where x = xy = 0

Go(w k) = G(0,0;w, k) = R[G™(0,0;w, k)] =

— 1 an

=~ 1D [1 + 2’;13 4 cos(knd) + ZnZ:lsm and) cos(knd)}
_ 1 cos(kd) — e~ B sin(ad)
~ 4Dad cosh(ad) — cos(kd)  cos(ad) — cos(kd)
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Iwo-dimensional beam as a multi-structure

The S’Adde bridge in Macomer . N
© Lower-dimensional model

Derivation of the dispersion equations
Dispersion diagrams
Structural optimisation

Dispersion diagrams

m Vertical bending mode, vertical displacement W(x) in the
deck and longitudinal displacement in the pillar

Golw, k) = ,%
z

Equivalent vertical stiffness , = 20.7910° MPa m

-~ Vertical flezural vibration: f,= 1.925 H{A

m Transverse bending mode, horizontal displacement V(x)
of the deck and transverse displacement of the pillar
1
Go(w, k) = ——
Ty
Equivalent transverse stiffness v, = 1.50 10°> MPa m.

Transverse flezural vibration: f,=2.136

mptotic models of
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nsional beam as a multi-structure
imensional model
Derivation of the dispersion equations
n diagrams
ructural optimisation

The S’Adde bridge in Macomer

Pillar: inertial or quasi-static?

t:
with inertial factor 11, (w) = an_& - —lasw — 0.

m Transverse mode
Vp(2) = G1e"* + Goe™ " + Gae™™ + Gye™ ™%
Dispersion relation: Go(w, k) = 7%,

with inertial factor
(@) 1—cos(ayly) cosh(ayly)

My \w W)’ cosh(ayl,) sin(al,) +sinh(ay],) cos(ayl,

3 — 1as w—0.

£ IHz]
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Iwo-dimensional beam as a multi-structure

The S’Adde bridge in Macomer

diment al model
ation of the dispersion equations
Dispersion diagrams
Structural optimisation

Pass bands for Bloch waves versus eigenfrequencies
of finite systems

Vertical mode

Transverse mode

N
T 4 o
AN .
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2F : : 4
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Iwo-dimensional beam as a multi-structure

The S’Adde bridge in Macomer

Lower-dimensional model

Derivation of the dispersion equations
Dispersion diagrams

Structural optimisation

Pass bands for Bloch waves versus eigenfrequencies
of finite systems

/ : . .
(HZ> H . 2 Vertical Flexural Mode
L © |2 Transverse Flexural Mode
° . © Longitudinal Mode
6 °o0 o
g° 3 M
.. «f: 1921 Hz
. .
te0 P .
. .
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.
°0 °0 '\f:lji% Hz
. . .

N
=ssoco
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o o
S
S
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e
o

f=0.757 Hz

o o/‘f‘ o—

Analytical
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Iwo-dimensional beam as a multi-structure
Lov limensional model
I ation of the dispersion equations

The S’Adde bridge in Macomer

Dispersion di
Structural optimisation

Structural optimisation

I IV Y,

£ [Hz]

00 o5 10 15 20 25 30 o s 0 2
kd LoggY., Log,q,

Lower bound | Upper bound | Optimal stiffness
Dk* — pw? = k) = =
pw 0 G()(w, ) 0 YOpt GO(\/DTT),TZ 0)

dT/
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Lightweight resonant structures
Modelling
Volgograd bridge Setting of the problem
2D simplified model
3D simplified model
Suppression of lateral vibrations of a skyscraper

Volgograd bridge

m Concrete girder bridge 7.110 m long

m October 2009 inauguration, May 2010 strong oscillations

m Large vibrations induced by relatively small external
forces

Low-frequen ymptotic models of bridge structures
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>ht resonant structures

Volgograd bridge 5 1e problem
2D simplified model
3D simplified model
Suppression of lateral vibrations of a skyscraper

Volgograd bridge

How to fix?
Strong alteration: increase total stiffness and/or inertia
and made structure capable to support external actions
Lightweight alteration: by-pass system for elastic waves,
channel waves around some parts of the structure

Prof. M. Brun — University of Cagliari Low-frequency asymptotic models of bridge structures



Lightweight resonant structures
Modelling

Volgograd bridge Setting of the problem
2D simplified model

3D simplified model
Suppression of lateral vibrations of a skyscraper

Lightweight resonant structures

Re-route the waves

Change the eigenmode!!

Q
i ™,

o9,

(2 9n

Prof. M. Brun

5



Lightweight resonant structures
Modelling
Volgograd bridge Setting of the problem
2D simplified model
D simplified model
Suppression of lateral vibrations of a skyscraper

Modelling

Finite structure composed by N identical spans — infinite
periodic structure subjected to Bloch-Floquet waves

i S

a9,

= 00z
Advantages:
Analysis of only a single unit
Dispersion properties characterize all possible
propagating and non propagation waves
Methodology for the design of resonant structures and
band gap opening

Prof. M. B iversity of Cagliari -] ymptotic models of bridge structures



Lightweight resonant structures
Modelling
Volgograd bridge Setting of the problem
2D simplified model
3D simplified model
Suppression of lateral vibrations of a skyscraper

Setting of the problem

Simplified FEM model of a unit cell

Q
09,

09,

aﬂu

m Lamé equations: pAu+ (A + p)VV - -u+pw?u=0 inQ
m Boundary conditions: t)(u) = 0 on 9Q), and

u =0 on 0Q),
m Quasy-periodicity conditions u(x + de(?)) = u(x)e’
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Lightweight resonant structures
Modelling
Volgogra g Setting of the problem
2D simplified model
3D simplified model
Suppression of lateral vibrations of a skyscraper

2D simplified model:
analysis of dispersion properties

i y cell '
i Y original
9, 09, % swewre
9, £ o | S
il 00,

0.0358
L g T——




Lightweight resonant structures
Modelling
Volgograd 3 Setting of the problem
2D simplified model
3D simplified model
Suppression of lateral vibrations of a skyscraper

2D simplified model:
pre-design of the resonant lightweight structure

1 /1 1 My — My \?
2 L2 2 1 2 .2 .2
fip= ) <E+E> [’71 + 2 sin ﬁi%h +4<m) sin® B(y1 + sin ﬁ)}
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Lightweight resonant structures
Modelling
Volgograd : Setting of the problem
2D simplified model
3D simplified model
Suppression of lateral vibrations of a skyscraper

2D simplified model:
variation of dispersion properties

ymptotic models of




Lightweight resonant structures
Modelling
Volgograd bridge Setting of the problem
2D simpli model
3D simplified model
Suppression of lateral vibrations of a skyscraper

3D simplified model

Change of the eigenmode by the introduction of the lightweight resonators

Mode 1: F=0.0181 Mode 2: F =0.0227
I/ 1\
— // \y Y
\/ /=
—_— = ———r v
Mode 3: F=0.0245 Mode 4: F = 0.0302

A2 TA ~

ymptotic models of bridg



Volgograd

Lightweight resonant structures

Modelling

Setting of the problem

2D simplified model

3D simplified model

Suppression of lateral vibrations of a skyscraper

Suppression of lateral vibrations of a skyscraper
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Uniform continuous model: a beam on an elastic foundation

Discrete continuous model
The critical displacement

Transition waves

Failure wave in elastic waveguides

m Localized damage in uniform or periodic waveguide may cause
a failure wave

m Propagating wave generated by earthquake (Chile 2010)

m Failure wave in World Trade Center

1 Ll

Bazant and Zhou (2002), Bazant and Verdure (2007), BaZant et al (2008)
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Uniform continuous model: a beam on an elastic foundation
Discrete continuous model
The critical displacement

Transition waves

Failure wave in elastic waveguides

m Failure wave accompanied by
energy release that overcomes an
energy barrier

m Analogy with phase transition

m Plane crushing waves: Galin & Cherepanov (1966), Grigoryan (1967),
Slepyan (1968,1977), Slepyan & Troyankina (1969), Slepyan (2002)

m Higher-order derivative formulation: Truskinovsky (1994,1997),
Ngan & Truskinovsky (1999)

m Discrete chain model: Slepyan & Troyankina (1984,1988), Puglisi &
Truskinovsky (2000), Slepyan (2000,2001), Balk et al (2001a,b),
Cherkaev et al (2005), Slepyan et al (2005), Slepyan &
Ayzenberg-Stepanenko (2004)
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Uniform continuous model: a beam on an elastic foundation
Disc continuous model

Transition waves )
The critical displacement

Transition wave in a supported heavy beam

Three models

H y=v-ot

w <
= D == D D D
M M g
"I o 1o 0 0 _0
i»{2 iAQ Al Al /!1
a7
w
m3,D m3,D mi. D mi, D
Ty Tt
M MG n
0 0 0 0 0
/2 i%z /1 41 /1
e
b

0 0
% =3, M=M; (before damage, 7 > 0)
Coor wly—o 2 We?
% =35 <, M=M, (after damage, 1 < 0)
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Uniform continuous model: a beam on an elastic foundation
Discrete continuous model

Transition waves
The critical displacement

Uniform continuous model: a beam on an elastic

foundation

q

4e

Q@ Y

o

,4:-."‘-:

m Energy excess per unit length:
g[) =A-&E-E,>0 if w.< wﬁ =wi\/ 1/

m Energy Balance:
g[) — Ul(cl/v — l) — UQ(l *Cz/v) =0

mptotic models of bridge structures



Uniform c uous model: a beam on an elastic foundation

; Disc ntinuous model
nsition waves
cal displacement

Uniform continuous model: a beam on an elastic
foundation

= Equation of motion

E) w(x, t) Pw(x,t)
73 T T M2 F7

+opw(xt) =mp g
m Steady state regime 17 = x — vt (v is failure wave speed)
Dw(i)" + myp " (i) + s w(y) =mp g

m Normalization: introduce § = (D/;q)lM, T=m/x
(and 3 = 50/ 31, i = my /1)

@ () + " () + @) =3 (1>0),
@ () +m " () + s@(y) = Mg (7 <0),

m Separate the initial static displacement @ = @ + g

) + P () +
@'V () +mP@" (i) + sw(y) =

mptotic models of



Uniform c

continuous model

nsition wav .
cal displacement

uous model: a beam on an elastic foundation

w
> V2 /
30F v> 2 /
V2(3)t < v <2
25F v =V2(3) Cg1
20l 0<v<V20)
L5f

Three regimes (0<r = 752/ 211<1)

0<v<uv= \ﬁ(;ﬁt)l/‘1

N <v<Uv] = \/i
V>0

m  subsonic range:
m  infersonic range:
m  supersonic range:

mptotic models of

dge structures



Uniform continuous model: a beam on an elastic foundation

2. 0 Disc ontinuous model
Transition waves

The critical displacement

Subsonic regime

Subsonic regime: 0 < v < v, = \/5( 2

w(n) = e ""(Ajcos iy + Bysin i) (
w(n) = e"(Az cos Bon + Basin Bony) + Q/ 3 (

1

2

—1>g>0

>




Uniform continuous model: a beam on an elastic foundation

ontinuous model

Disc
al displacement

Transition waves
The critic;

Intersonic regime

Intersonic regime: vy = \/E(%)l/ ton< v = \/§
(n >0)

w(n) = e “1(Aj cos B11 + By sin B177)
w(n) = Az cos By + Basin By + Q/ 3¢ (7 < 0)

10F
08
06

04

ymptotic models of bridge structures
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Uniform continuous model: a beam on an elastic foundation
Disc ontinuous model

Transition waves
The critical displacement

Suersonic regime

Supersonic regime: v > v; = V2

w(n) = Ay cos iy + Bysin By (7 > 0)
w(n) = Az cos By + Basin By + Q/ 3¢ (7 < 0)

V-Vt —4x 11— “0
Vot —4+ Vot — 45 §

w(0) = —

Prof. M. Brun — University of C -] ymptotic models of bridge structures



Uniform c uous model: a beam on an elastic foundation
Disc ontinuous model

n waves .
T al displacement

subsonic intersonic  supersonic
w(0) os

g
06

04

Three regimes (% = 50/ 321)

m  subsonic range: w(0) = (\/Zﬁ 1) g§>0

. . 2 ot — 4%
m  intersonic range: w(0) = TR YT AZe

w(O) _ P45 l—kg <0

m  supersonic range:

T Veapoax &




Uniform continuous model: a beam on an elastic foundation
continuous model
1l displacement

o*w(x, 1) Pw(x, 1)
D—G—+ m"}’ZT =m,g

mx=an,n>0

2.
M )~ Q) + Q) = Mg

ME@) =M (1) =0
mx=an,n <0

rZ
PO 4 ) - Q) +Q (1) = Mag

M) =M™ () =0

ge structures



Uniform continuous model:

Discrete continuous model

Transition waves o
The critical displacement

Non dimensional form

a beam on an elastic foundation

Introduce & = (D/3a)"% 1= m/x (0 = A2 /a)

m X # an:
I, ) | Mip () _ My
oxt my o2 o mq
mx=an,n>0:
- k(i) | o
T2 a) - Lot i) - o) = Mg

mx=an,n<0:

o (i) |

4 2y - 2108 () - Q ()] = g




2 > Discrete continuous model
Transition waves

The critical displacement

Separation of the static contribution

Uniform continuous model:

a beam on an elastic foundation

o
x=an: Maw(n)

m<0
rw(x, ) | mdo*w(x, i)  md—md
YA e Y e




Uniform continuous model: a beam on an elastic foundation
Discrete continuous model
The critical displacement

Transition waves

Interaction of neighboring cross section

Steady-state regime:

wF (x, k) = W(x)wp + O(x)¢o

(cosh Aa — cos Aa) (cosh Ax — cos Ax) — (sinh Aa + sin Aa) (sinh Ax — sin Ax)

W(x) = 2(1 — cosh Aa cos Aa)

(cosh Aa — cos Aa) (sinh Ax — sin Ax) — (sinh Aa — sin Aa) (cosh Ax — cos Ax)
2A(1 — cosh Aa cos Aa)

A= (m/m)V*Vkv =10

P(x) =

mptotic models of bridge structures



Uniform continuous model: a beam on an elastic foundation
Discrete continuous model

Transition waves

The critical displacement

Interaction of neighboring cross section

QF(0,7) = Quowo + Qpodo,  QF(a,17) = Quatto + Qpatpo
ME0,17) = Mugwo + Mgogo,  MF(a,1) = Mo + Mgagpo

A3(sinh Aa + sin Aa) A2(cosh Aa — cos Aa)

Quo = 5= oshaacos a0 = T~ cosh Aacos Aa
_ A3(cosh Aasin Aa + sinh Aa cos Aa) _ A’sinhAasinAg
Qua = 1 — cosh Aacos Aa ¢+ Qm=- 1 — cosh Aacos Aa
A2(cosh Aa — cos Aa) A(sinh Az — sin Aa)
Mao === coshAacosAa Moo =—7= cosh Aa cos Aa
A2(sinh Aasin Aa) A(cosh Aasin Aa — sinh Aa cos Aa)

Muyg = Mz/m =

" 1—coshAacosAa’ 1 — cosh Aacos Aa

Static limit, v — 0:

12 6
Quo = Qua — 1173, QLPO - qu - 71172

6 4
Muyo = =M — a Mg = —2Myo — -
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Uniform continuous model: a beam on an elastic foundation
Discrete continuous model

Transition waves
The critical displacement

The Wiener-Hopf equation

m One-sided Fourier transform n = an — k

{04 (0,400} = [ (), @) e dy
(w0 (0,00} = [ (o), ¢} dy
s Governing Equation for M; at 7 = 0
(1 — Mok w. (k) + (522 / 51 — Mok )w_ (k) +
+%(Qm — Quocoska)w’ (k) + %Qw sinka ¢F (k) =
iMo sinkaw’ (k) + (Mg — Mgo coska) ' (k) =

Prof. M. Brun — University of Cagliari Low-frequency asymptotic models of bridge structures



Uniform continuous model: a beam on an elastic foundation
Discrete continuous model

Transition waves o .
The critical displacement

Eliminate ¢F (k)

Ly (k)w, (k) + La(k)w_ (k) = Fclk

Li(k) = 14 M;(0 4 ikv)? + = | (Qua — Quo coska) +

2
a

Q¢0Mw0 sin2 ka
Mg — Mo cos ka

Qq;o./\/lwo sin? ka }

. 2
Ly(k) = % + M, (0 + ikv)* + A (Qua — Quo coska) +

Ma — Mo coska

Wiener-Hopf equation

Lo(k)w (k) +w— (k) = (0+ik)[1—%2/%1+?M1—Mz)(0+ikv)2] [Lo(k) —1]

Lo(k) = Ly (k) /Ly (k)

Prof. M. Brun — University of C ri Low-frequency asymptotic models of bridge structures



Uniform continuous model: a beam on an elastic foundation
Discrete continuous model

Transition waves o
The critical displacement

Factorization

m IndL(k) = 5-[ArgL(c0) — ArgL(—o0)] =0
m Cauchy type integral: Ly(k) = lim Ly (k)L_(k)
Jk—0

Li(k) = exp {i% /:: h;(i) dg} (£3k > 0)

m Wiener-Hopf equation

L+(k)w+(k)+zf%((kk)) = {%[m(k) —L+(0)]} + {ﬁ {u(o) - L%(k)”

regular in the upper/lower half plane of k
m One-sided transform

8L+(k)*L+(0) 7( ):7

Ol = T

Prof. M. Brun — Univ



Uniform continuous model: a beam on an elastic foundation
Discrete continuous model

Transition waves v q
The critical displacement

Solution

m Critical displacement: from limiting relations

w(+0) = lim (£ik)ws(k), Li(Fico) =1

k—+ico
we find
w(40) = w(—0) = w(0) = g[L+(0) — 1]
with
Li(0) = %exp [ii /000 ArgkL(k)dk] (L(O) = 2)

Prof. M. Brun — Uni



Uniform continuous model: a beam on an elastic foundation
e continuous model

Transition waves o A
ical displacement

The massless beam model

0

D
g{?ag{

Fwlry) _
oxt T 0

AR A —
34 34 0
Lo

Equation of motion for the massless beam:

12 6
QwO_>Qwu — 1173, Qd)O _>Q¢a — _172

6 4
MwO — =My — LTZ’ M¢a — —2./\/1450 — E

. 12 (1 — coska)?
_ 2, 14
Li(k) =1+ (0 + iko)” + 21 coskn

. 12 (1 — coska)?
Lz(k) = %2/%] + (0+ lkv)z + 574(24»?]@1)

Prof. M. B iversity of Cagliari Low-frequency asymptotic models of bridge structures



Uniform continuous model: a beam on an elastic foundation
continuous model

Transition waves vl A
The critical displacement

Massless beam model

W ol | m
l'i ]'Z l'i
12 [ 2] L

R i e ka

2 4 6 8 10 12

(2)
k2n2+1

x.
=

211 +1

idge structur



Uniform continuous model: a beam on an elastic foundation

continuous model
ical displacement

Transition waves

The critical displacement

w(0)
I A'f

etteey
02 4 ¢ " Continuous N

Discrete

(2 vrv
\Urrr “H

Le L L L




Uniform continuous model: a beam on an elastic foundation

Di continuous model
The critical displacement

Transition waves

Solution for the inertial beam model: regularization

m Introduce a small dissipation « in proportion to the strain rate
in the bending moment

2 3
M= *w(x, 1) Ma w(x, 1)

ox2 otox?
u
(+0) = w(~0) = w(0) = glL+(0) — 1]
with
L2(0) = /2 exp [:t% /OmArgTL(k)dk] <L(O) = %)

mptotic models of bridge structures



Uniform continuous model: a beam on an elastic foundation
Disc ontinuous model

n waves ] q
The critical displacement

Inertial and Massless beam model

Normalised span length.
S’Adde bridge: a = 2.02 for vertical flexural waves and a = 0.83 for horizontal flexural waves

Millau viaduct: 2 = 7.61 for vertical flexural waves and a = 0.99 for the horizontal flexural waves
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Uniform continuous model: a beam on an elastic foundation
Di e continuous model

Transition waves vl A
The critical displacement

San Saba bridge in Las Plassas, Texas

25

U
5 & B

Failure speed (m/s)

0
13 5 7 9 11131517 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Collapsed pillars

20
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Conclusion

Conclusion

Thank you for your attention!

Prof. M. Brun — University of Cagliari Low-frequency asymptotic models of bridge structures
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