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The structures is a prestressed continuous hollow box-girder bridge
launched by segmental construction technique (over head method).
The cantilever launching gantry can move along the viaduct.
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Two-dimensional beam as a multi-structure

Multi-structure — Ciarlet (1990), Kozolov et al. (1999)

Set involving subdomains of different limit dimensions con-
nected through junction regions

First eigenfrequency: bridge deck as a rigid solid,
supporting pillars as thin flexural elastic beams.

ω1 =

√
12 Np EpJp

MT l3p
∼ O(ε2)

Higher frequencies: bridge deck elastic flexural beam
interacting with thinner supporting pillars: analysis of
Bloch waves in an infinite periodic structure.
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Two-dimensional beam as a multi-structure

For sufficiently low frequencies
ω of vibrations, the upper deck
is treated as a one-dimensional
massive elastic beam resting on
concentrated elastic supports
disposed periodically with
span length d.

Leading approximation of the
elastic displacement field

u ∼ u(x, t)ex + v(x, t)ey +w(x, t)ez,
Decoupled vibration modes

Vertical bending mode [E Jy(x)wxx]xx + ρ A(x)wtt = q(x, t)

Horizontal bending mode [E Jz(x)vxx]xx+ρ A(x)vtt=p(x, t)

Longitudinal mode [E A(x)ux]x − ρ A(x)utt = r(x, t)
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Green’s function

Time-harmonic vibrations

u(x, t)ex + v(x, t)ey +w(x, t)ez = [U(x)ex +V(x)ey +W(x)ez]eiωt

Equation of motion for concentrated load at x = x0

DgTot
xxxx(x, x0; ω)− ρω2gTot(x, x0; ω) = δ(x− x0)

where D = E J̄j/Ā (j = x, y)
Fourier transform g(x, x0; ω)→ g̃(k, x0; ω), (x→ k)

(Dk4 − ρω2)g̃(k, x0; ω) =
eikx0

√
2π
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Green’s function

Solution in the Fourier space

g̃(x, x0; ω) =
1√
2π

eikx0

2Dα2

(
1

k2 + α2 −
1

k2 − α2

)
, α =

(
ρω2

D

) 1
4

Inverse transform

gTot(x, x0; ω) = − 1
4Dα3

(
e−α|x−x0| + ie−iα|x−x0|

)
Green’s function

g(x, x0; ω)=R[gTot(x, x0; ω)]=
−1

4Dα3

[
e−α|x−x0| + sin(α|x− x0|)

]
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Quasi-periodic Green’s function
Define

GTot(x, x0; ω, k) = gTot(x, x0; ω)+
+∞

∑
n=−∞

n 6=0

gTot(x, x0 +nd; ω)eiknd

for − d
2 < x, x0 < d

2 .
It is quasi-periodic

GTot(x + md, x0; ω, k) = GTot(x, x0; ω, k)eikmd

Recast in the form

GTot(x, x0; ω, k) = − 1
4Dα3

[
eα|x−x0|α1(ω, k) + e−α|x−x0|(α2(ω, k) + 1)

+eiα|x−x0|β1(ω, k) + e−iα|x−x0|(β2(ω, k) + i)
]
.

where

α1(ω, k) =
+∞

∑
n=1

e(−α+ik)nd, α2(ω, k) =
+∞

∑
n=1

e−(α+ik)nd = ᾱ1(ω, k),

β1(ω, k) = i
+∞

∑
n=1

e−i(α−k)nd, β2(ω, k) = i
+∞

∑
n=1

e−i(α+k)nd.
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Quasi-periodic Green’s function

Configuration where x = x0 = 0

G0(ω, k) = G(0, 0; ω, k) = R[GTot(0, 0; ω, k)] =

= − 1
4Dα3

[
1 + 2

+∞

∑
n=1

e−αnd cos(knd) + 2
+∞

∑
n=1

sin(αnd) cos(knd)
]

= − 1
4Dα3

[
1 +

cos(kd)− e−αd

cosh(αd)− cos(kd)
− sin(αd)

cos(αd)− cos(kd)

]
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Dispersion diagrams

Vertical bending mode, vertical displacement W(x) in the
deck and longitudinal displacement in the pillar

G0(ω, k) = − 1
γz

Equivalent vertical stiffness γz = 20.79 103 MPa m

Transverse bending mode, horizontal displacement V(x)
of the deck and transverse displacement of the pillar

G0(ω, k) = − 1
γy

Equivalent transverse stiffness γy = 1.50 103 MPa m.
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Pillar: inertial or quasi-static?
Vertical mode Wp(z) = F1 cos

(
ω
c0

z
)
+ F2 sin

(
ω
c0

z
)

Dispersion relation: G0(ω, k) = − ηz(ω)
γz

with inertial factor ηz(ω) =
tan
(

ω
c0

l
)

ω
c0

lp
→ 1 as ω → 0.

Transverse mode
Vp(z) = G1eαpz + G2e−αpz + G3eiαpz + G4e−iαpz

Dispersion relation: G0(ω, k) = − ηy(ω)
γy

,
with inertial factor
ηy(ω)= 12

(αplp)3
1−cos(αplp) cosh(αplp)

cosh(αplp) sin(αplp)+sinh(αplp) cos(αplp)
→ 1 as ω→0.

Prof. M. Brun — University of Cagliari Low-frequency asymptotic models of bridge structures



The S’Adde bridge in Macomer
Volgograd bridge
Transition waves

Conclusion

Two-dimensional beam as a multi-structure
Lower-dimensional model
Derivation of the dispersion equations
Dispersion diagrams
Structural optimisation

Pass bands for Bloch waves versus eigenfrequencies
of finite systems
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Pass bands for Bloch waves versus eigenfrequencies
of finite systems

Vertical Flexural Mode

Transverse Flexural Mode

Longitudinal Mode

12 spans
Analytical

Model
6 spans 2 spans

γx

M

f= Hz1.921

f= Hz1.894

f= Hz0.757

fA

fB

fC
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Structural optimisation

Lower bound Upper bound Optimal stiffness
Dk4 − ρω2 = 0 G0(ω, k) = 0 γOpt =

1
G0

(√
DD

ρ
π2

d2 ,0
)
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Volgograd bridge

Concrete girder bridge 7.110 m long
October 2009 inauguration, May 2010 strong oscillations
Large vibrations induced by relatively small external
forces
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Volgograd bridge

How to fix?

1 Strong alteration: increase total stiffness and/or inertia
and made structure capable to support external actions

2 Lightweight alteration: by-pass system for elastic waves,
channel waves around some parts of the structure
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Lightweight resonant structures

Re-route the waves

Change the eigenmode!!

(  )a (  )b

(  )c (  )d

(  )a (  )b

(  )c (  )d
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Modelling

Finite structure composed by N identical spans→ infinite
periodic structure subjected to Bloch-Floquet waves

(  )a (  )b

(  )c (  )d

Advantages:

1 Analysis of only a single unit
2 Dispersion properties characterize all possible

propagating and non propagation waves
3 Methodology for the design of resonant structures and

band gap opening
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Setting of the problem

Simplified FEM model of a unit cell

(  )a (  )b

(  )c (  )d

Lamé equations: µ∆u + (λ + µ)∇∇ · u + ρω2u = 0 in Ω
Boundary conditions: t(n)(u) = 0 on ∂Ωσ and
u = 0 on ∂Ωu

Quasy-periodicity conditions u(x + de(1)) = u(x)eikd
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2D simplified model:
analysis of dispersion properties

elementary cell

γ1

γ γ γ γ

u
(1)

u
(2)

original
structure

resonating
structure( )a

( )b

x1

x2
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2D simplified model:
pre-design of the resonant lightweight structure

Analytical estimates of the eigenfrequencies for the 2D structure With reference to figure
1 the masses M1, M2 subjected to displacements u(1) = [u

(1)
1 , u

(1)
2 ]T and u(2) = [u

(2)
1 , u

(2)
2 ]T

satisfy the equations of motion

F(1) + G(1) + H(1) = M1ü
(1),

F(2) + G(2) + H(2) = M2ü
(2), (1)

where

F(j) = −[γ u(j) · (− sin β e(1) + cos β e(2))](− sin β e(1) + cos β e(2))

G(j) = −[γ u(j) · (sin β e(1) + cos β e(2))](sin β e(1) + cos β e(2)) j = 1, 2 (2)

and

H(1) = γ1 (u(2) − u(1)) · e(1),

H(2) = γ1 (u(1) − u(2)) · e(1). (3)

γ1

γ γ γ γ

u
(1) u

(2)

x1

x2

h
1

h
2

H
(1)

G
(1)

F
(1)

H
(2)

G
(2)

F
(2)

Figure 1: Truss model used for the analytical estimates: each masses Mi undergoes the hori-
zontal and vertical displacements u

(i)
1 and u

(i)
2 , respectively, with i = 1, 2. Parameter values are:

d = 4 m; the thickness s = 0.2 m; the radii of the disks are 0.1 m and 0.075 m; h1 = 2 m,
h2 = 1 m, β = π/6; the longitudinal stiffness coefficients are γ = 0.14 GPa, γ1 = 0.018 GPa;
the main plate has mass density ρ = 7850 kg/m3 and shear modulus µ = 80 GPa; the disks and
the elastic links have mass density ρM = 7850 kg/m3 and ργ = 200 kg/m3, respectively.

Considering that the displacements are time harmonic with angular frequency ω = 2 π f ,
the four scalar equations (1) give the four dispersion equations for the four frequencies fA,B,C,D

given in equation (1) in the article.

1

f 2
A,B =

1
8π2

(
1

M1
+

1
M2

)γ1 + 2γ sin2 β±
√

γ2
1 + 4

(
M1 −M2

M1 + M2

)2

γ sin2 β(γ1 + γ sin2 β)


f 2
C =

γ

2 M1π2 cos2β, f 2
D =

γ

2 M2π2 cos2β,
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2D simplified model:
variation of dispersion properties

( )b

k d

( )a

k d

0.0358

0.0358

0.0359

0.0394

0.0834

0.1069

A
= 0.1632

*
=

B
= 0.1142

A
= 0.1699

B
= 0.1226
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3D simplified model
Change of the eigenmode by the introduction of the lightweight resonators

Mode 1: = 0.0181 Mode 2: = 0.0227

Mode 3: = 0.0245 Mode 4: = 0.0302
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Suppression of lateral vibrations of a skyscraper

(a) 0.0225 −→

(b) 0.2254 −→
(c) 0.3936 −→
(d) 0.4446 −→
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Failure wave in elastic waveguides

Localized damage in uniform or periodic waveguide may cause
a failure wave
Propagating wave generated by earthquake (Chile 2010)

Failure wave in World Trade Center

Baz̆ant and Zhou (2002), Baz̆ant and Verdure (2007), Baz̆ant et al (2008)
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Failure wave in elastic waveguides

Failure wave accompanied by
energy release that overcomes an

energy barrier

Analogy with phase transition
Plane crushing waves: Galin & Cherepanov (1966), Grigoryan (1967),
Slepyan (1968,1977), Slepyan & Troyankina (1969), Slepyan (2002)
Higher-order derivative formulation: Truskinovsky (1994,1997),
Ngan & Truskinovsky (1999)
Discrete chain model: Slepyan & Troyankina (1984,1988), Puglisi &
Truskinovsky (2000), Slepyan (2000,2001), Balk et al (2001a,b),
Cherkaev et al (2005), Slepyan et al (2005), Slepyan &
Ayzenberg-Stepanenko (2004)
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Transition wave in a supported heavy beam
Three models

(a)

(b)

(c)

η = x− v t

κ0 = κ0
1 , M = M1 (before damage, η > 0)

κ0 = κ0
2 < κ0

1 , M = M2 (after damage, η < 0)
w|η=0 ≷ wc?
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Uniform continuous model: a beam on an elastic
foundation

(a)

(b)

(c)

Energy considerations

Energy excess per unit length:

E0 = A−E2−E∗ > 0 if wc < w∗c = w1

√
κ1/κ2

Energy Balance:
E0−U1(c1/v− 1)−U2(1− c2/v) = 0
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Uniform continuous model: a beam on an elastic
foundation

(a)

(b)

(c)

Equation of motion

D
∂4w(x, t)

∂x4 + m1,2
∂2w(x, t)

∂t2 +κ1,2 w(x, t) = m1,2 g

Steady state regime η = x− vt (v is failure wave speed)

Dw(η)IV + m1,2 v2w′′(η) +κ1,2 w(η) = m1,2 g

Normalization: introduce ξ = (D/κ1)
1/4, τ =

√
m1/κ1

(and κ̂ = κ2/κ1, m̂ = m2/m1)

w̃IV(η) + ṽ2 w̃′′(η) + w̃(η) = g̃ (η > 0) ,

w̃IV(η) + m̂ ṽ2 w̃′′(η) + κ̂ w̃(η) = m̂g̃ (η < 0) ,

Separate the initial static displacement w̃ = w̄ + g̃

w̄IV(η) + ṽ2 w̄′′(η) + w̄(η) = 0 (η > 0)

w̄IV(η) + m̂ ṽ2 w̄′′(η) + κ̂w̄(η) = g̃ (m̂− κ̂) (η < 0)
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Three regimes (0<κ̂ = κ2/κ1<1)

subsonic range: 0 ≤ v < v2 =
√

2(κ̂)1/4

intersonic range: v2 < v < v1 =
√

2
supersonic range: v > v1
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Subsonic regime

Subsonic regime: 0 ≤ v < v2 =
√

2(κ̂)1/4

w(η) = e−α1η(A1 cos β1η + B1 sin β1η) (η > 0)

w(η) = eα2η(A2 cos β2η + B2 sin β2η) +Q/κ̂ (η < 0)

w(0) =
(√

κ1

κ2
− 1
)

g > 0
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Intersonic regime

Intersonic regime: v2 =
√

2(κ̂)1/4 < v < v1 =
√

2

w(η) = e−α1η(A1 cos β1η + B1 sin β1η) (η > 0)

w(η) = A2 cos β2η + B2 sin β2η +Q/κ̂ (η < 0)

w(0) =
v2 − 2κ̂ −

√
v4 − 4κ̂

2κ̂ g
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Suersonic regime

Supersonic regime: v > v1 =
√

2

w(η) = A1 cos β1η + B1 sin β1η (η > 0)

w(η) = A2 cos β2η + B2 sin β2η +Q/κ̂ (η < 0)

w(0) = − v2 −
√

v4 − 4κ̂√
v4 − 4 +

√
v4 − 4κ̂

1− κ̂
κ̂ g < 0
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subsonic intersonic supersonic

Three regimes (κ̂ = κ2/κ1)

subsonic range: w(0) =
(√

κ1
κ2
− 1
)

g > 0

intersonic range: w(0) = v2−2κ̂−
√

v4−4κ̂
2κ̂ g

supersonic range: w(0) = − v2−
√

v4−4κ̂√
v4−4+

√
v4−4κ̂

1−κ̂
κ̂ g < 0
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Discrete continuous model(a)

(b)

(c)

x 6= an:

D
∂4w(x, η)

∂x4 + m0
1,2

∂2w(x, η)

∂t2 = m0
1,2 g

x = an, η > 0:

M1
∂2w(η)

∂t2 +κ0
1w(η)−Q+(η) + Q−(η) = M1 g

M+(η)−M−(η) = 0

x = an, η < 0:

M2
∂2w(η)

∂t2 +κ0
2w(η)−Q+(η) + Q−(η) = M2 g

M+(η)−M−(η) = 0
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Non dimensional form
Introduce ξ = (D/κ1)

1/4, τ =
√

m1/κ1 (κ1 = κ0
1/a)

x 6= an:
∂4w̃(x̃, η̃)

∂x̃4 +
m0

1,2

m1

∂2w̃(x̃, η̃)

∂t̃2 =
m0

1,2

m1
g̃

x = an, η > 0:

M̃1
∂2w̃(η̃)

∂t̃2 + w̃(η)− 1
ã
[
Q̃+(η̃)− Q̃−(η̃)

]
= M̃1g̃

M̃+(η̃)− M̃−(η̃) = 0

x = an, η < 0:

M̃2
∂2w̃(η̃)

∂t̃2 +
κ2

κ1
w̃(η)− 1

ã
[
Q̃+(η̃)− Q̃−(η̃)

]
= M̃2g̃

M̃+(η̃)− M̃−(η̃) = 0
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Uniform continuous model: a beam on an elastic foundation
Discrete continuous model
The critical displacement

Separation of the static contribution

w̃(x̃, η̃) = g̃ +
m0

1(x̃− ãn)2(x̃− ã(n + 1))2

m1
g̃ + w̄(x̃, η̃)

η > 0:

x 6= an :
∂4w̄(x̃, η̃)

∂x̃4 +
m0

1
m1

∂2w̄(x̃, η̃)

∂t̃2 = 0

x = an : M̃1
∂2w̄(η̃)

∂t̃2 + w̄(η̃)− 1
ã
[
Q̄+(η̃)− Q̄−(η̃)

]
= 0

M̄+(η̃)− M̄−(η̃) = 0

η < 0:

x 6= an :
∂4w̄(x̃, η̃)

∂x̃4 +
m0

2
m1

∂2w̄(x̃, η̃)

∂t̃2 =
m0

2 −m0
1

m1
g̃

x = an : M̃2
∂2w̄(η)

∂t̃2 +
κ2

κ1
w̄(η̃)− 1

ã
[
Q̄+(η̃)− Q̄−(η̃)

]
=

(
1− κ2

κ1
+ M̃2 − M̃1

)
g̃

M̄+(η̃)− M̄−(η̃) = 0
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Uniform continuous model: a beam on an elastic foundation
Discrete continuous model
The critical displacement

Interaction of neighboring cross section

w0

φ0

x = 0 x = a

Steady-state regime:

wF(x, k) = W(x)w0 + Φ(x)φ0

W(x) =
(cosh λa− cos λa)(cosh λx− cos λx)− (sinh λa + sin λa)(sinh λx− sin λx)

2(1− cosh λa cos λa)

Φ(x) =
(cosh λa− cos λa)(sinh λx− sin λx)− (sinh λa− sin λa)(cosh λx− cos λx)

2λ(1− cosh λa cos λa)

λ = (m0
1/m1)

1/4
√

kv− i0
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Uniform continuous model: a beam on an elastic foundation
Discrete continuous model
The critical displacement

Interaction of neighboring cross section

QF(0, η) = Qw0w0 + Qφ0φ0 , QF(a, η) = Qwaw0 + Qφaφ0

MF(0, η) =Mw0w0 +Mφ0φ0 , MF(a, η) =Mwaw0 +Mφaφ0

Qw0 =
λ3(sinh λa + sin λa)
1− cosh λa cos λa

, Qφ0 = −λ2(cosh λa− cos λa)
1− cosh λa cos λa

Qwa =
λ3(cosh λa sin λa + sinh λa cos λa)

1− cosh λa cos λa
, Qφa = −

λ2 sinh λa sin λa
1− cosh λa cos λa

Mw0 =
λ2(cosh λa− cos λa)

1− cosh λa cos λa
, Mφ0 = −λ(sinh λa− sin λa)

1− cosh λa cos λa

Mwa = −
λ2(sinh λa sin λa)
1− cosh λa cos λa

, Mφa =
λ(cosh λa sin λa− sinh λa cos λa)

1− cosh λa cos λa

Static limit, v→ 0:

Qw0 → Qwa →
12
a3 , Qφ0 → Qφa → −

6
a2

Mw0 → −Mwa →
6
a2 , Mφa → −2Mφ0 →

4
a
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Uniform continuous model: a beam on an elastic foundation
Discrete continuous model
The critical displacement

The Wiener-Hopf equation

One-sided Fourier transform η = an→ k

{w+(k), φ+(k)} =
∫ ∞

0
{w(η), φ(η)}eikη dη

{w−(k), φ−(k)} =
∫ 0

−∞
{w(η), φ(η)}eikη dη

Governing Equation for M1 at η = 0

(1−M1v2k2)w+(k) + (κ2/κ1 −M2v2k2)w−(k)+

+
2
a
(Qwa −Qw0 cos ka)wF(k) +

2i
a

Qφ0 sin ka φF(k) =
C

0 + ik
iMw0 sin ka wF(k) + (Mφa −Mφ0 cos ka)φF(k) = 0
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Uniform continuous model: a beam on an elastic foundation
Discrete continuous model
The critical displacement

Eliminate φF(k)

L1(k)w+(k) + L2(k)w−(k) =
C

0 + ik

L1(k) = 1 + M1(0 + ikv)2 +
2
a

[
(Qwa −Qw0 cos ka) +

Qφ0Mw0 sin2 ka
Mφa −Mφ0 cos ka

]

L2(k) =
κ2

κ1
+ M2(0 + ikv)2 +

2
a

[
(Qwa −Qw0 cos ka) +

Qφ0Mw0 sin2 ka
Mφa −Mφ0 cos ka

]

Wiener-Hopf equation

L0(k)w+(k) + w−(k) = C
(0+ik)[1−κ2/κ1+(M1−M2)(0+ikv)2]

[L0(k)− 1]

L0(k) = L1(k)/L2(k)
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Uniform continuous model: a beam on an elastic foundation
Discrete continuous model
The critical displacement

Factorization

Ind L(k) = 1
2π [ArgL(∞)−ArgL(−∞)] = 0

Cauchy type integral: L0(k) = lim
=k→0

L+(k)L−(k)

L±(k) = exp
[
± 1

2πi

∫ ∞

−∞

ln L(ξ)
ξ − k

dξ

]
(±=k > 0)

Wiener-Hopf equation

L+(k)w+(k)+
w−(k)
L−(k)

=
{ g

ik
[L+(k)− L+(0)]

}
+

{
g

0 + ik

[
L+(0)−

1
L−(k)

]}
regular in the upper/lower half plane of k

One-sided transform

w+(k) =
g
ik

L+(k)− L+(0)
L+(k)

w−(k) =
g

0 + ik
[L+(0)L−(k)− 1]
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Uniform continuous model: a beam on an elastic foundation
Discrete continuous model
The critical displacement

Solution

Critical displacement: from limiting relations

w(±0) = lim
k→±i∞

(±ik)w±(k) , L±(±i∞) = 1

we find

w(+0) = w(−0) = w(0) = g[L+(0)− 1]

with

L±(0) =
√

κ1

κ2
exp

[
± 1

π

∫ ∞

0

ArgL(k)
k

dk
] (

L(0) =
κ1

κ2

)

Prof. M. Brun — University of Cagliari Low-frequency asymptotic models of bridge structures



The S’Adde bridge in Macomer
Volgograd bridge
Transition waves

Conclusion

Uniform continuous model: a beam on an elastic foundation
Discrete continuous model
The critical displacement

The massless beam model

Equation of motion for the massless beam: ∂4w(x,η)
∂x4 = 0

Qw0 → Qwa →
12
a3 , Qφ0 → Qφa → −

6
a2

Mw0 → −Mwa →
6
a2 , Mφa → −2Mφ0 →

4
a

L1(k) = 1 + (0 + ikv)2 +
12
a4

(1− cos ka)2

2 + cos ka

L2(k) = κ2/κ1 + (0 + ikv)2 +
12
a4

(1− cos ka)2

2 + cos ka
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Uniform continuous model: a beam on an elastic foundation
Discrete continuous model
The critical displacement

Massless beam model

(a) (b)

(c)

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

w(0) = g

√ κ1
κ2

 n1
∏
i=1

k(1)2i

k(1)2i−1

n2
∏
j=1

k(2)2j−1

k(2)2j

 k(2)2n2+1

k(1)2n1+1

− 1


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Uniform continuous model: a beam on an elastic foundation
Discrete continuous model
The critical displacement

The critical displacement

Continuous

Discrete
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Uniform continuous model: a beam on an elastic foundation
Discrete continuous model
The critical displacement

Solution for the inertial beam model: regularization

(a)

(b)

(c)

Introduce a small dissipation α in proportion to the strain rate
in the bending moment

M =
∂2w(x, η)

∂x2 + α
∂3w(x, η)

∂t∂x2

w(+0) = w(−0) = w(0) = g[L+(0)− 1]

with

L±(0) =
√

κ1

κ2
exp

[
± 1

π

∫ ∞

0

ArgL(k)
k

dk
] (

L(0) =
κ1

κ2

)
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Uniform continuous model: a beam on an elastic foundation
Discrete continuous model
The critical displacement

Inertial and Massless beam model(a)

(b)

(c)

(a)

(b)

(c)

Continuous Continuous

Normalised span length.

S’Adde bridge: a = 2.02 for vertical flexural waves and a = 0.83 for horizontal flexural waves

Millau viaduct: a = 7.61 for vertical flexural waves and a = 0.99 for the horizontal flexural waves
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Uniform continuous model: a beam on an elastic foundation
Discrete continuous model
The critical displacement

San Saba bridge in Las Plassas, Texas

Small

displacement

V
e

rt
ic

a
l 

d
is

p
la

ce
m

e
n

t
w

(0
)

Normalized velocity v

v interval

Critical point

vsup =

(
Dκ

ρ2

)1/4

= 24.3m/s

v = 22.4m/s
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Conclusion

Thank you for your attention!
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