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Context : generalities about metasurfaces

What is a meta-surface ?

A meta-surface (also called metafilm) is a plane material, made of thin and densely
packed planar arrays of sub wavelength elements.

Sheng Liu, Polina P. Vabishchevich, Aleksandr Vaskin, John L. Reno, Gordon A. Keeler, Michael B. Sinclair,
Isabelle Staude & Igal Brener, Nature Communications, 2018

This is the 2D version of periodic meta-material

Holloway-Kuester-Gordon-O’Hara-Booth-Smith 12, Glybovski-Tretyakov-Belov-Kivshar-
Simovski 16...



Context : generalities about metasurfaces

Why are the metasurfaces interesting ?

Meta-surfaces take less physical space than 3D metamaterial structures.

Possible applications:
* angular-independent surfaces,
* absorbers,
* controllable smart surfaces,
* wave guiding structures.

Kuester-Holloway and co-authors 03-05-09-10-11-14.. ..



Context : generalities about metasurfaces

Why is it important to model meta-surfaces !

incident wave : wavelength w

w <K 0

What is the macroscopic effect of the micro-structure ?

* Numerical issues
* 3D periodic homogenization does not apply directly.



Outline of the talk

|- Investigation of a 2D-model problem

2- Extensions and numerical illustrations

3- 3D time-harmonic Maxwell’s equations

4- Homogenization in presence of corners



|- Investigation of a 2D-model problem

The domain of interest :
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|- Investigation of a 2D-model problem

The domain of interest :
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|- Investigation of a 2D-model problem

The domain of interest :
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|- Investigation of a 2D-model problem

Well-posedness and stability property

Proposition: let f € L%(Q2°). Problem (P) has a unique solution u° € H'(Q°)
that satisfies the following stability estimate: 4C" > 0,

‘|u5HH1(Q5) < C || fllzz(0




|- Investigation of a 2D-model problem

Obijective:
» behavior of u’with respect tod as ¢ tends to 0
* replacement of the periodic layer with an approximate transmission
condition posed on the limit interface I’

Q+

I'

PP PPPP PP
0

Method:
construction of an asymptotic expansion of W w.rt

derivation of an approximate problem



|- Investigation of a 2D-model problem

Method of matched asymptotic expansions

Far field zones far from the periodic layer

N N N N ‘I‘ L N Near field zone around the thin periodic layer
[

. Matching zones

Van Dyke 64, II'in 92, Maz’ya-Nazarov-Plamenevskij 00, Tordeux-Joly 06, Claeys 08, Hewett-
Hewitt 16, Marigo-Maurel 16-18, Maurel-Marigo-Pham 18-19, Mercier-Maurel-Marigo 17...



|- Investigation of a 2D-model problem

Method of matched asymptotic expansions: far field equations

Far field zones far from the periodic layer
0O+
0
900000000 u = Z(sq
geN
Q- Macroscopic (far field) terms

v The macroscopic terms , are defined in QT U Q™

v They are not necessarily continuous across I



|- Investigation of a 2D-model problem

Method of matched asymptotic expansions: far field equations

0"
--------------------------------- W= 5q
qgeN
QO Macroscopic (far field) terms
v Far field equations
(f a4=0
_Auj:: ) in Q—I_ JOQ™ +B.C
! | 0 otherwise

Missing information: transmission conditions across I' (two functions of x)

[ug)(x1) = uy (21,0) — u, (21,0)

02,u4] (1) = Opyu,) (21,0) — Opyu, (21, 0)

$2q wgq



|- Investigation of a 2D-model problem

Method of matched asymptotic expansions: near field equations

0

Near field zone around the thin periodic layer

5131 5132
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Near field terms \
<low variation 1-periodic w.r.t X,
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Periodicity cell B
B = {(~1/2,1/2) x R} \ Qo



|- Investigation of a 2D-model problem

Method of matched asymptotic expansions: near field equations

1 I9 1 1 X9

5 ) 5 )) — (6:21qu1 + 5VXUq> (3317 5 ’ 5 )

v Near field equations

V (Uq(ml,

parameter
—Aqu@ X) — Gq in B
3 0,U, =0 on 8y O
L —
U, l-periodic
Gy =02 Uj—o +204,0x,Uq—1

We assume that the near field terms are not exponentially growing at infinity

These equations determined U , up to the determination of the kernel K of the

Laplacian operator in the periodicity cell 5 (with homogeneous Neumann
boundary conditions)



|- Investigation of a 2D-model problem

Method of matched asymptotic expansions: near field equations

Proposition:
IC = span{l1, N'}
—AxN =0
O N =0
KXQ ‘|‘Noo XQ — 400 1
N ~ 4
\XQ _Noo X2 — — OO

The near field terms U, are defined up to the specification of two functions of K,
linked to their behaviour at infinity.

a(z1) + B(x)N



|- Investigation of a 2D-model problem

Method of matched asymptotic expansions: matching conditions

The missing information (4 functions of 1) will be provided by the matching
conditions

Matching zones

5 e 2V
N
XXX XXX XX I

Far and near field series coincide in the matching zones

T, T
u’ = Z5q Ug(x) u’ = Z5q Uqg(21, 517 52)

q €N qeN

Neighborhood of 1 for the far field (z2small)

Behavior at infinity of the near field (X2large)



|- Investigation of a 2D-model problem

Method of matched asymptotic expansions: matching conditions

Proposition: periodic exponentially decaying

~

Uq(aj'l,Xl,Xg) :a(‘;(xl) —+ b;_(ilil)XQ -+ (XQ)Zp(_;(XQ,ZCl)—I—O(G_X2)

N

NV

polynomial w.r.t X»

X ’f(sk
uq(x1,5X2):u+(a?1,O) -+ X258 u 5131, —|— Z 2 x2 _l_(CCl,O)

q L2 g q

T1 X
u’ = Z 0luy(x1, T2) = Z 07 U, (1, 51, 52)

geN qg €N




|- Investigation of a 2D-model problem

Method of matched asymptotic expansions: construction of the first terms

Notation: mean value and jump value across the limit interface I

ut(21,0) +u (x1,0)
2

mean value (uy(x1) :=

jump value | (1) := u™ (21,0) — v (21, 0)



|- Investigation of a 2D-model problem

Method of matched asymptotic expansions: construction of the first terms

Near field term of order O:

/

—Aon(xl,X) =0 in B
anU() = 0 on aﬁhole ‘
Uo 1-periodic

\ UONU(:)E(Qj‘l,O) XQ%ZIOO

—_—p UUye U :O‘(ml)_l_ﬁ(xl)'/\/




|- Investigation of a 2D-model problem

Method of matched asymptotic expansions: construction of the first terms

Near field term of order I:

/

“AxUi(z1,X)=0 in B
8nU1 =0 on aﬁhole ‘
U1 1-periodic

\ U1 ~ Uit(flll,()) -+ X2 8x2u§(x1,0) X2 — OO

— Ui ek Uy = alzy) + Blz))N
Ur ~ (a(z1) £ B8(71)N) + B(21) X2

0y, 0] (z1) = 0 ui](@1) = 2Noo (O, u0) (1)

U()(Clﬁl,Xl,Xg) = <”LL1>(5131) + <(9$2u0>(a:1)/\/'(X1,X2)




|- Investigation of a 2D-model problem

Method of matched asymptotic expansions: construction of the first terms

Near field term of order 2:
[ —AxUs(z1,X) = 02, (uo) (1) + 205, {0z, uo) (21)0x, N

871U2 =0 on aﬁhole

Uz 1-periodic 2
\UQ ~ uét(ajl,()) + X5 8x2u1i(:131,0) — ( 22) 0§1<u0>(m1) Xy — +o00
( —AXNQO =1 r_AXN21 — 28X1N
\ an,NQO =0 { 6nN21 =0
1 oo | o0 (X2)2 N e oo | COOX
\NQO ~ __N20 T 020 X9 — 9 \ 21 ~ L JVop L Loy A2

(u2) + (Opyur) N+ 02 (o) Nag + Oz, (Dy uo)No
By linearity

[awzul] = 2 058 851 <u0> + 2 Cgf a5131 <a$2u0>




|- Investigation of a 2D-model problem

Method of matched asymptotic expansions: construction of the first terms

Far field term of order O:

[ —Aug =f in QF
O+ up]l =0

V' [9s,u0] = O

\ + B.C
0

At the limit, the thin periodic interface disappears.



|- Investigation of a 2D-model problem

Method of matched asymptotic expansions: construction of the first terms

Far field term of order I:

(—AuI—L —0 inQF
QF u1](21) = 2Noo (O, u0)(21)
VO] = 2C55 62, {10} + 253 Do, (Do)
""""""""""""""""""""" +B.C
\
o

v By induction, we can construct the far field terms and near field terms up to
any order



|- Investigation of a 2D-model problem

Method of matched asymptotic expansions: justification

X is a smooth cut-off function

(1) 1 t] > 2
Y0 <t

0O 0
XX XXX XXX)

jm 75 =0 ) =0
X2
Xn(X) = X <?>
Global approximation: . .
by = X (%) Y M u(x) + (1= xy (%)) Yy 8" Un(ar, 5)
k=1 k=1

Global error:



|- Investigation of a 2D-model problem

Method of matched asymptotic expansions: justification

o ~Aeb =& 4+ E . inQ°

> ) )
X XXXXXXX. One’ =0 on O .

/"

5 . .
Em.n matching error: measure the mismatch between far field and near field
equations in the matching zones

5 . : .
., consistency error: measure how the near field expansion fails to solve the
Laplace equation



|- Investigation of a 2D-model problem

Method of matched asymptotic expansions: justification
) d n—
Hgm,nHL2(Q5) T ch,nHL2(Q5) < 077 ! HfHL2(Q5)
+ stability estimate

Proposition: ||u° — ugm

sy < O fll 20y

XX Q, =7 uUQ;

n(d) = 512+ triangular inequality

‘Proposition: 1w’ — (ug + duq) |m1(0,) < C’(SZHfHLz(Q(s)




|- Investigation of a 2D-model problem

Method of matched asymptotic expansions:

Matched asympototic expansion

OO.C":‘OO

Far field zones
o __ q
— Z 07 1q(x)
qeN

Near field zone
L1 X2

U(S — Z 04 Uq(xl,
geN

Matching zones

)

)

Compound method (boundary layer or
multiscale approach)

_ Z 54 (X(aj_

2 )ug (%) + g (1,
q €N

2.2)

macroscopic term  boundary layer corrector

periodic w.rt. X,
exponentially decaying w.r.t X

Nazarov 81, Sanchez-Palencia 83, Artola Cessenat
91, Abboud-Ammari 96, Achdou 92, Achdou-
Pironneau-Valentin 98, Poirier-Bendali-Borderies 06,
Madureira-Valentin 06, Bonnetier-Bresch-Milisic 10...

Link between the two types of expansions

Vg = Ugq

q
I, =U,— Y x5 (X2) Z k » U
T k=1

k(xlvo)



|- Investigation of a 2D-model problem

Approximate transmission conditions:

Obijective: replacement of the periodic layer with an approximate transmission
condition posed on the limit interface

We construct an approximate problem whose the solution is close to

Ups = Up + 0U
—AU175 — f

upl(z1) =0

x§  [u1](m1) = 2Noo (Oz,u0) (1)

[u1,6](21) = 26 Noo {0y ua k) + O(5%)

Similarly
Opyur s)(z1) =28 C58 07 (ur,5)(w1) + 28 C57 0z, (Dyun ) (1) + O(57)




|- Investigation of a 2D-model problem

Approximate transmission conditions:

Obijective: replacement of the periodic layer with an approximate transmission
condition posed on the limit interface

—Aly 5= f inQF
U1,5](21) = 20 Noo (O, 11,5) (1)

Oayiia s)(z1) = 28 C55 2, (in,5)(@1) + 26 C55 0., (911, 5) (1)
+ B.C

Investigation in the symmetric case: C57 = 0



|- Investigation of a 2D-model problem

Approximate transmission conditions:

Variational formulation: Vv € V = {v € H*(Q1" UQ™), v-periodic,v =0 on I'p}

/ Viys - Vv —20Cq /(&Elul 5) {0y | / u1 5| / fu
Q+uUQ- r 2N oo Q+uQ-

coercive term compact term coercive if Cj; < 0

stable if N > 0

Problem: it might be that C5 > 0 or N <0



|- Investigation of a 2D-model problem

Approximate transmission conditions:

A possible remedy: shift of the transmission condition: o > 0

0"
T Yo (ris a parameter to be ajusted
r- —o0x
{2
] = |ular, ad) — v(z, —ad)

(VY = %:v(ajl,ac?)—l—v(a:l,—ozé)_




|- Investigation of a 2D-model problem

Approximate transmission conditions:

A possible remedy: shift of the transmission condition: o > 0

Q)
rt :
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|- Investigation of a 2D-model problem

Approximate transmission conditions:

A possible remedy: shift of the transmission condition: o > 0

~Aly 5= f inQF
U1 5la(T1) = 20 NG (O, U1,5)a (1)

[awaal,(s]oz(xl) =20 ng’a 821 <a1,5>a($1)

+ B.C

NE =No+2a >0

Cop" =C5 —2a <0

Remark: important for the stability of time-domain problems



|- Investigation of a 2D-model problem

Approximate transmission conditions:
assumption: N3 >0et Cy5" <0

Proposition:

li1,s — @\ grgzy < C 8 (I fllLz@x)

Well-posedness and stability of the approximate problem

Asymptotic expansion of i s



2- Extensions and numerical illustrations
Applications and extensions

* Curve geometries

* Oscillatory boundary (wall-laws)

Nazarov 81, Sanchez-Palencia 83, Conca 87, Artola Cessenat 91, Abboud-Ammari 96,
Achdou 92, Achdou-Pironneau-Valentin 98, Poirier-Bendali-Borderies 06, Madureira-Valentin
06, Mikelic 09, Bonnetier-Bresch-Milisic 10...



2- Extensions and numerical illustrations
Applications and extensions

* Application to other linear equations (Helmholtz)

* Time domain problems

A
"
A
A
A
‘~ ’
- -

Joly-Semin 10, Lombard-Maurel-Marigo 17,Maurel-Marigo-Mercier-Pham 18, Maurel-
Pham-Marigo 19,

* other types of boundary conditions/dielectrical material

1

1

]
1

L4
’

._I‘ Dirichlet/Robin
@ @

" ' dielectrical obstacles

1
]
L
L4

| . Hewitt-Hewett
o W



2- Extensions and numerical illustrations
Applications and extensions

* Three scale problems Hewett-Hewitt 16...

oy
/'—— .\"\
© el
® o
* high contrast meta-surfaces
ol
S 1
@ @ — o=+



2- Extensions and numerical illustrations

Numerical results for the Helmholtz equation: algorithm
|- Computations of the ‘profile’ functions in the periodicity cell

00, QX

2- Computation of the constants a., N'S, C5;

3- Computation of the approximate solution (coarse mesh).

4- A posteriori construction of the near field (optional).



2- Extensions and numerical illustrations

Numerical results for the Helmholtz equation: algorithm

w=2m R=1
— 27 — 47 o = 1
plane wave Pl P2 P
A p1 =0.05,u2 =2, oo =1
2
N = WTR number of cell problems

(

(p2, t2) 15 141)




2- Extensions and numerical illustrations

Numerical results for the Helmholtz equation: algorithm

Total field, N =160

I1

1.

n

—_

0.

n

:

-0.

n

1
—_—

-1.

n

-2
-2 -1.3 -1 -0.3 0 0.3 1 1.3 2

Exact solution Approximate solution



2- Extensions and numerical illustrations
The Dirichlet case

Wity F
Hrt
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- s o —Au® = fin
p p
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«— —0on I
- ooooo0O0®e® (p){ =Y b
u® 2L-periodic
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|- Investigation of a 2D-model problem

The Dirichlet case

Theorem: the limit of ©. as § tends to 0 is the function u’ € H' () unique solution
to the problem

—Aui=f in QF AU =f inQ
) i =0 onT 1 ug =0 onT
| B.C.on 9f) B.C.on 90

0

At the limit, the two problems are uncoupled : shielding effect.



|- Investigation of a 2D-model problem

The Dirichlet case: idea of proof

Far field expansion: 1° = Z 01 uqi (x)
qgeN

L1 T2

(5’5)

Near field expansion: 1’ = Z 07 Uy(21,
qgeN

Matching (order 0): Uy ~ ua—L(xl, 0) as Xo — +00



|- Investigation of a 2D-model problem

The Dirichlet case: idea of proof

Near field equation of order O:

/

—AxU()(CEl,X) =0 in B

(D)< Up=20 on O Mhole '

Ug 1-periodic

Uy ~ uy (71,0) as Xy — 400

The near field term Uo is in the kernel KCg of the Laplacian operator with
homogeneous Dirichlet boundary conditions.

Ka = span{D1, Da}

Dl ~ Xz DQ ~ |X2| as X2 — -OQ




|- Investigation of a 2D-model problem

The Dirichlet case: idea of proof

Near field equation of order O:

/

—AxU()(CEl,X) =0 in B

(D)< Up=20 on O Mhole '

Ug 1-periodic

Uy ~ uy (71,0) as Xy — 400

Ug(x1,%x) = ai(x1) D1(X) + as(x1)D2(X)

Up(z1,x) ~ ug(z1,0%) Xo — £00



|- Investigation of a 2D-model problem

The Dirichlet case: numerical illustration

g

1.4 Z
1.4 1.4
1
1 1
= q0a
0.4 0.4
plane wave
M 0 —
05 -0.5
H-0.5
=1 =1
2
1.4 -1.3
-2 -15 -2
i -2 -1.4

-0.5 0 0.5
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3- 3D time-harmonic Maxwell’s equations

Presentation of the problem

thin and periodic interface
(meta-surface)

Main features of the meta-surface:

: small
- set of equi-spaced metal obstacles 0

- periodic of period 0 w.r.t 1 and X2

- thickness 0



3- 3D time-harmonic Maxwell’s equations

Presentation of the problem
Main features of the meta-surface:

- set of equi-spaced metal obstacles
- periodic of period o w.r.t £1 and 2

reflected field - thickness ¢

Electromagnetic shielding

tra itted\field

[

Behavior of the electromagnetic field as 0 tend to 0.



3- 3D time-harmonic Maxwell’s equations

Presentation of the problem

perfect conductor

Maxwell’s equations

2

curl curl u® — Ww?eu’ = f

Assumptions:

the source term is supported away from the thin periodic interface

Ime >0 Ree>0



3- 3D time-harmonic Maxwell’s equations

Presentation of the problem

curl curl u® — Ww?eu’ = f

W xn=0 on 9N°




3- 3D time-harmonic Maxwell’s equations

resentation of the problem

2

curl curl u® — w?eu® = fin

W xn=0 on 0Q°
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3- 3D time-harmonic Maxwell’s equations
Back to the 2D case

1
ho = — curl u’
1w

curl curl u® — w2eu® = fin Q°

u xn=0|on d0°

> 2 uncoupled bi-dimensional Helmholtz problems for (11°)sand(h%), -



3- 3D time-harmonic Maxwell’s equations
Back to the 2D case

wW =0 or O,u’ =0

Periodic
Periodic

v The limit depends on the geometry of the meta-surface

YD/N/R
Q —Au’ — Wy’ = fin Q0
()

on 09° in Q°



3- 3D time-harmonic Maxwell’s equations

Asymptotic expansion

—iwh® + curlu’® =0 in Q°,
. 5 1 , 5 wWxn=0and h® - n=0onTI?°.
—iwu® —curlh? = ——f in Q°,
1w



3- 3D time-harmonic Maxwell’s equations

Asymptotic expansion

v Far from the meta-surface (above and below the grating)

u’ = Z 07 u,(x) h® = Z 07 h,(x)

qeN g€EN



3- 3D time-harmonic Maxwell’s equations

Asymptotic expansion

v In the neighborhood of the meta-surface

slow variations

— 1 Ty X
u5:Z5qu($17x27 517 527 53) hézzéqu(xth? 57 57 5)

qeN

I-periodic w.r.t X7 and X5



Asymptotic expansion

Matching zones

lim o
£133—>O:|:

lim ho
ZEg—)Oi

3- 3D time-harmonic Maxwell’s equations

v Matching zones: far and near field expansions coincide in some intermediate
areas

lim UO
X3—>:|:OO

lim H()

X3—>:|:OO



3- 3D time-harmonic Maxwell’s equations

Asymptotic expansion: limit near field problem

CllI‘lX UO =0 1n %ooa CllI'lX H() =0 1n 95}00,
divy Uy =0 in A, divy Hy =0 1in B,
Uygxn=0 on 08, Hy n=0 on 08,

—— Electrostatic kind problem (Ciarlet 04)

<>
1 )E'S 1
7 E AN
X, T~
Xo
<>

Normalized infinite domain %, Periodicity cell



3- 3D time-harmonic Maxwell’s equations

Near field problem for Uy :

v functional space

TN (PBo) = {u € Higc(curl; Boo) N Hipe(div; B ) :|u is 1-periodic in X7 and Xs,

\/1 —1:|?3X3)2 c (LZ(%)P’ Curlu|gg c (L2(<@))37 div P c LQ(%), T Olon a%m}

v Investigation of the space Ky

Ky ={u € 5N (P ), curlu = (),Idivu = 0‘} .

(Monk, Girault-Raviart, Amrouche-Bernardi-Dauge-Girault, Gramain)

Uy e Ky




3- 3D time-harmonic Maxwell’s equations

Near field problem for Hj, :

v functional space

7 (PBoso) = {h € Hipe(curl; Boo) N Hioe(div; B )

h is 1-periodic in X; and X5

hi € (L*(A))*, curlhg € (L*(A))°, div

V14 (X3)?

v Investigation of the space Kr

h % € L*(%), | hm=0/on 0%},

divh = 0

9

Kr=1{h € %T(%m),lcurlh =0

;

(Monk, Girault-Raviart, Amrouche-Bernardi-Dauge-Girault, Gramain)

H()EKT




3- 3D time-harmonic Maxwell’s equations
|dentification of Ky

Ky = {u S VO,per(Q%oo)a curlu = 0 in D,(%OO)S, divu = 01in D/(‘%OO)}

curlu = 0 u=Vp divu=0 = —-Ap=0
-

u X n=0on0A P = ¢, on each connected component of 0%

(Monk,Amrouche-Bernardi-Dauge-Girault)

case |:one constant ¢;;for each ball



3- 3D time-harmonic Maxwell’s equations
|dentification of Ky

Ky = {u S VO,per(L%oo)a curlu = 0 in D,(%%)37 divu = 01in D/(‘%OO)}

curlu = 0 u=Vp divu=0 = —Ap=0
=

u X n=0on0A P = ¢, on each connected component of 0%

(Monk,Amrouche-Bernardi-Dauge-Girault)

case 2: one constant ¢; on each 'line'



3- 3D time-harmonic Maxwell’s equations
|dentification of Ky

Ky = {u S VO,per(Q%oo)a curlu = 0 in D’(%oo)i%, divu = 01in D/(‘%OO)}

curlu = 0 u=Vp divu=0 = —-Ap=0
-

u X n=0on0A P = ¢, on each connected component of 0%

(Monk,Amrouche-Bernardi-Dauge-Girault)

case 3:one constant ¢ for the whole structure



3- 3D time-harmonic Maxwell’s equations
|dentification of K : case |

u = Vp, Vp periodic

There are two constants a; andazs.t p = p — a3 X1 — ag X is periodic

case |:one constant ¢;; for each ball

Cli+1)j — Oél(Xl —+ 1) — o Xo = Cij — a1 X1 — e Xo
p periodic =

Cz'(j—|—1) — Olel — &Q(XQ —+ 1) — Cz'j — Olel — OéQXQ

—> ¢;; = Cop + Q11+ 2)



3- 3D time-harmonic Maxwell’s equations
|dentification of K :case |

u = Vp, Vp periodic

—> There are two constants &i1and @2 s.t p = p — a1.X1 — a2.X2 is periodic

_Ap:() — ﬁ|%:a1§£1 ‘I‘OCZ«/@\/)(Q +51@1+62@2+53

f_Aé\); =0 in% —AY; =0 inA
{ Zx, = —Xi on 0B NIBx D=0  ondBNIB.
\Dx; ~ Ci as Xz — 400 D ~ X3 as X3 — +00

(—A,@2 =0 in%

_ a1
<€@2_0 On@ﬁﬂa%m :>u:Vp~ 0% asX;;%::oo

(Do ~ | X3| as X3 — 400 B1 £ Ba




3- 3D time-harmonic Maxwell’s equations
|dentification of K n:case 2

u = Vp, Vp periodic

—> There are two constants @jand @2 s.t D — a1 X1 — ag X is periodic

\\\\\

case 2: one constant ¢; on each 'line'

C; — Oéle — (XQ(XQ —+ 1) — C; — CV1X1 — CVQXQ

D peI’IOdIC — Cit1 — Oél(Xl + 1) — a2X2 — C; — Olel — OdQX2




3- 3D time-harmonic Maxwell’s equations
|dentification of K :case 2

u = Vp, Vp periodic

—> There is a constant « s.t p = p — a1.X1 is periodic

\ '@X"L ™~ CBI:(i

(—AD5 =0
< Yy =0
\«@2 ™~ ’X3|

—Ap=0 = ]5|93:Oélévxl + 51%1 + B2D2 + B3

in A —A@l =0 in A

on 0% N 0F P =0 on 0% N 0B

as X3 — +00 D ~ X3 as X3 — 400

exponentially decaying in X3
in A
OB N OB, &

on — u=Vp~ |0 as X3 — 00
as X3 — +o00 B1 & B




3- 3D time-harmonic Maxwell’s equations
Identification of K :case 3

u = Vp, Vp periodic

There are two constants @iand d2s.t p = p — a1 X1 — aa X2 is periodic

case 3:one constant ¢ for the whole structure
p periodic = ag=0and a1 =0

—Ap=0 = pPz=50%+0%+0s . o
exponentially decaying in X3

— u=Vp~ |0 as Xg — oo
b1 £ 52




3- 3D time-harmonic Maxwell’s equations
|dentification of Ky

Theorem:

Case 1: K is the space of dimension 4 given by Kny = span{V%x,,V%x,, V%1,V D} .
Case 2: K is the space of dimension 3 given by Ky = span{V%x,,VZ1,V D} .

Case 3: K is the space of dimension 2 given by Ky = span{V%,,V %y} .

(—Agl =0 in%H
Dx, = Ix, + X; 91 =0 on OB N OB,

D ~ X3 as X3 — +00

(—AZx, =0 in % (“ADy =0 in B
<§\);;:—Xi on 0% N 0A Y5 =10 on 04 N 0P~
o +

\Dx; ~ ¢ as X3 — 400 D> ~ | X3| as X3 — +o00




3- 3D time-harmonic Maxwell’s equations
|dentification of K

Theorem:
Case 1: K is the space of dimension 3 given by K1 = span{V41,V A5, V. 43}.

Case 2: K is the space of dimension 4 given by K+ = span {VJl/l, VJl/Qi, VJV;;} .

Case 3: K is the space of dimension 5 given by K+ = span {VJl/li, VJVQi, VJ%;} :

case | :
i € 41,2}
; periodic
Ny = N + X; — AN, =0 in B, lim V4, =0, lim A4 =0
— X3—too X3——+00
OnN; = —€;-n on 0%,
3 periodic
—AN =0 in B, lim V45 =es, lim A5 —y3 = 0.
X3—>:|:OO X3——+00

Op-HN3 =0 on 08,

VN; ~e; as Xz — +00



3- 3D time-harmonic Maxwell’s equations
|dentification of K

Theorem:

Case 1: K is the space of dimension 3 given by K1 = span{V41,V A5, V. 43}.
Case 2: K is the space of dimension 4 given by K+ = span {VJl/l, VJl/zi, VJV;;} .

Case 3: K is the space of dimension 5 given by K+ = span {V/Vli, VJl/Qi, VJ%;} :

aE g
N5 periodic

“AME =0

OnME =0

BE = (B \T)N{£X5 > 0}

(simply connected domains)

in Boo \ 2,

Ou Vit = —ey-n on OBE NOR..,

on 0AF N 0B,

/"

—_ N ——

([ A5F]n, = £ — Xo),

J

[aXs%i/]E_j/ = 0,
lim AT =0,
\ X3—>+400



3- 3D time-harmonic Maxwell’s equations
|dentification of K

Theorem:
Case 1: K is the space of dimension 3 given by K1 = span{V41,V A5, V. 43}.

Case 2: K is the space of dimension 4 given by K+ = span {VJl/l, VJl/Qi, VJl{),} .

Case 3: K is the space of dimension 5 given by K1 = span {V/Vli, VJl/Qi, VJ%;} :

)
I BE = (B \ L) N {£X;3 > 0)
\\\ (simply connected domains)

TN es as X3 — +00 TN 0 as X3 — 400
0 as X3 — —00 : ey as X3 — —00



Analysis of the simple 3D case

|dentification of K

Theorem:
Case 1: K is the space of dimension 3 given by K1 = span{V41,V A5, V. 43}.

Case 2: K is the space of dimension 4 given by K+ = span {VJl/l, V/Vf, V/l{g} .

Case 3: K is the space of dimension 5 given by K+ = span {V/Vli, VJl/Qi, Vﬂé} :

case3: set of ‘cuts’ Y = U 225 4
(4,5)€Z?

ie{1,2) VN*N{GZ' as X3 = +00

0 as X3 —> —o©



3- 3D time-harmonic Maxwell’s equations
Application to the asymptotic expansion

R
Hy € K7 0600003“\
. : _°°°°°O°O°Q°~b"~.
lim up= lim U, 5o g P ©%¢ %5
5133—)O:|3 X3—+oo Il O @ ) @ (o) @ o (& P () O O 6::>
' = i 0005002099949
lim hyp= Im Hj 090500 002
r3—0%t X3—+oo “~.\\° P P o P o 9,—9""
99 9¢g 9.
Q _____
case |:

Ug = Cvl.@)(l —+ 042@){2 + oz;V.@l + Oég_vgg
Hy = 1M + BaAa + B3V A3

_l_ —
Ug ~ aje; + asey + (043 T Qg )1:|:X3>063

as X3 — oo

Hy ~ B1e1 + Baes + Pses

— up X n and hp X n are continuous across the limit interface x3 = 0

At the limit, the thin periodic interface disappears (no shielding effect)



3- 3D time-harmonic Maxwell’s equations
Application to the asymptotic expansion

Uy e Ky Hy € Kp

lim Ug — lim UO
333—)O:|: X3_>:I:OO

lim h() — lim HO
x3—)0:|: X3—>:|:OO
case 2:

Uy = Yx, + oz}fV.@l + a3 V%,
Hy = 1M + B3Ny + By Ny 4 B3V A3

_I_ —
U() ~ (1€ + (043 T (g )]_:|:X3>063

Hy ~ Bie; + 55_LliX3>092 + Bses

as X3 — oo

= (up)2 = 0 on the limit interface

(up)1 and (hg);continuous across the limit interface

partial shielding effect for one component of the waves



3- 3D time-harmonic Maxwell’s equations
Application to the asymptotic expansion

Up € Ky Hy € Kr reflected field
Im up= Im Uy

r3—0T X3—+oo
lm ho= Iim H,j

r3—0F X3—4o00

case 3:

n
Ug ~az1lix,>0€3

Ho ~ 5i|:]-z|:X3>Oel + BS:]-:EX3>062 + Bses

transmitted field

—> ug X n = 0 on the limit interface z3 =0

At the limit, no electromagnetic field below the meta-surface (total shielding effect)

(B. Schweizer | 7, Holloway-Kuester 18)



3- 3D time-harmonic Maxwell’s equations

curlu” xn =ey + ey

curl curl u® — w2eu®

e

I..IIIIIIIIII



3- 3D time-harmonic Maxwell’s equations




4- Homogenization in presence of corners

Diffraction by infinite line of equi-spaced obstacles

Uinc

0O 0
000000 0O

L

Analysis of the solution as 0 goes to 0: periodic homogenization

What can we do when the periodicity of the problem is lost ?



4- Homogenization in presence of corners

A model problem:

Qé = () \ Q](rslole

Dirichlet

N N N N N N N N Neen
N N N N NN N N N

Description of the problem:
AW =f in Q°
(P) w’ =0 on 99
A’ =0 on o0 .



4- Homogenization in presence of corners

Well-posedness and stability property

Proposition: let f € L%(Q2°). Problem (P) has a unique solution u° € H'(Q°)
that satisfies the following stability estimate: 4C" > 0,

Hu‘s\\m(m) < C || fllz2(a9)

Objective: behavior of u°with respect to ¢ as § tends to O
construction of an asymptotic expansion of u’w.r.t §

Main difficulty: presence of both corners and the periodic layer

X QQQQOOQ@




4- Homogenization in presence of corners

Technical Assumptions:

v the support of f does not intersect the interface I

v the canonical obstacle (),,1. is smooth.

SUpp f

I
AN
000000000
X0 X0

smooth obstacles




4- Homogenization in presence of corners

Limit domain as ) — 0:

9%
- L a4 o 4 4 amgn
%0 %0
(1p
Limit problem:uo o € H'(Q)
—Atgo = [ in £ Q=QrUQpUT

Up,0 = 0 on 8&2



4- Homogenization in presence of corners
The necessary introduction of singular macroscopic terms

When using the classical Ansatz... u’ = Z 04 (X(%)Uq (x) + HQ(xla %))
q €N
Limit (macroscopic) problem:(uy = 1 ) . 0
( T !
_Auo — f in Q _ _}‘_ ________ )-}-{\—F ............. 0 =0
(Po) - e, %0
\ I
A=QrUQpuUT

— (Po) has a unique regular solution v, € H'(Q)

2
In the vicinity of the corners: 1y = %\;* Cn sin(§ n o)

singular exponents (depend on the angle)



4- Homogenization in presence of corners

The necessary introduction of singular macroscopic terms

Problem for u;

—1/3
—Au1 =0 in () Cr /

u; =0 ondf) \

(P1)

U1,

Oy

1‘1:

1‘1:

» It is possible to construct a sin
in the vicinity of the corners x;

D{i 8561 <u0>F Dtll <a€62u0>F

2taazzl <u0>F T NQn 85131 <aﬂb‘2u0>F

/

Cr—?/3

presence of a corner boundary layer effect

@

X0

» (P1) has no regular solution (in H'(Q7) N H*(QR))

iular solution that behaves like Cr~1/3




4- Homogenization in presence of corners

Construction of the full asymptotic expansion : two preliminary remarks

(1)- Asymptotic expansion ofu ¢ in the neighborhood of the cornerx

0

Separation of variables: v o = E
neN*

(2)- Purely periodic case:

u =

qeN

X

6 = 37/2

Cp 73" sin(g n o)

Formal change of scale: R = r/d g = Z Cn,

neN*

=2 Yty (x) + 11,

N* =N\ {0}

Wl

" sin(g n o)

L1, <



4- Homogenization in presence of corners

corner singularities
2
> + ER

periodic layer correctors

Methodology : we use the method of matched asymptotic expansions

(Caloz-Costabel-Dauge-Vial 06, Nazarov 08)

& 5




4- Homogenization in presence of corners

Method of matched asymptotic expansions |: main ideas

. Far field zone : it is located far from the corners it includes the thin periodic layer

Near field zones : they are located close to the corners

. Matching zones




4- Homogenization in presence of corners

Method of matched asymptotic expansions |: far field expansion

HT_A_< = < > = >

O__
—Hp : :
| 1 | 1 —
7 _L 0 L L'
snt+q , 0 L
Z . 0 un’q(X)\ macroscopic terms 7] >
(n,q) €N / periodic correctors
2., X X
> (), (0 + 10 (@1, 5)) el <
(n,q) € N?

as in the purely periodic case



4- Homogenization in presence of corners

")

u, ., are the macroscopic terms
F\ Qr
i e e _I_
(lp

v They are defined in Q27 U Qp

v They are not necessarily continuous across I

v They (might) only have a polynomial dependence w.r.t.In o :

K
ug,q = Z(ln 8)* U g1 Un.q.1 independant of §
k=0

due to the corners

v They might blow up in the vicinity of the corners X(i)




4- Homogenization in presence of corners

Method of matched asymptotic expansions |: far field expansion

I , are the periodic correctors

Hz,q(xlv X17 X2)

\ —> X,
1

exponentially decaying w.r.t X,

\4
I-periodic w.r.t X

(boundary layer effect)
Periodicity cell 5

They are defined inI' x B

They (might) only have a polynomial dependence w.r.t.In o :
K

H,‘;,q = Z(ln 5)k 1L, 4.k L1}, 4.k independant of §

—0 due to the corners

v They might blow up in the vicinity of the corners Xg (z17 — +L)




4- Homogenization in presence of corners

Method of matched asymptotic expansions 2: near field expansion

Near field areas (close to the corners)

u5: Z 53n—|—q U(S;(X_XES)

(n,q) € N2



4- Homogenization in presence of corners

Method of matched asymptotic expansions 2: near field expansion

1

o00® -
+—>
1

a\

\
&

()

>

The infinite angular domain Q

v They are defined in the infinite angular domain O+
v They might have a polynomial dependance w.r.t In 0

v They might blow up at infinity



4- Homogenization in presence of corners

Method of matched asymptotic expansions 3: matching principle

Far and near field expansions coincide in the matching zones

Neighborhood of the corners for the far field (r small)
R going to +00 for the near field



4- Homogenization in presence of corners

Justification of the asymptotic expansion: convergence

v Far field equations

v Near field equations| —»Existence of all the terms of the asymptotic expansion
v Matching Procedure recurrence procedure to define the different terms

_eoo0000000 °

~__

Proposition: Let o > 0,and
Qo =\ (=L —a,L+a) x (—a,a).
There exists , such that for 0 sufficiently small

Hu5 — Z 5%n—l—q u?%q ‘Hl(Qa) < Co™"Ino"

(n,q)EN?, 2n+qg<m

HU5 — Up,0 — 5’&0,1 | 5%UQ,OHH1(QQ) S 052 Ino



4- Homogenization in presence of corners

Numerical illustration of the convergence estimates.

|u® — woo — duos = 03us 0|l mia,) < C6*Ind

100 |
1071 F T
S
5
g’ 1072}
3
o
>
-3
10 —— IIU‘s - uoaolle(Qo.zs)
1.92 o {[u? —uo0 —duol| 2, )
—o— I|u5 — up,0 — 0up,1 — 54/3“'2,0”1;2(90,25)
1074 F ‘
1072 10~

Distance § between two consecutive holes



Thank your for your attention !

In collaboration with Xavier Claeys, Tung Doan, Houssem Haddar, David P. Hewett,
Patrick Joly, Adrien Semin, Kersten Schmidt.



