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1. Introduction

High-contrast layered structures
• photovoltaic panels • laminated glass

www.dupont.com www.gscglass.com



Introduction

Sandwich structures

• Foam insulation panels

Rus & Tolley, 2015. Design, fabrication and control of soft robots. Nature, 521(7553), 467.

Soft robots
• Classical sandwich plate

Stokes et al. A hybrid combining hard and soft robots. Soft Robotics 1.1 (2014): 70-74

Bio-composites

• (Teeth, bones, etc., contain both
soft protein/collagen matrix and hard mineral inclusions)

Slesarenko et al., 2017. Understanding the strength of bioinspired soft composites.
Int. J. Mech. Sci, 131, 171-178.



2. Low-frequency vibrations of multi-component high-contrast elastic rods

Contrast in
• Stiffness

• Density

• Length

Small parameters  asymptotic methods

Physical intuition:

Strong components (free ends) - almost rigid body motions

Weak components (fixed b.c.) - almost homogeneous deformations
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J. Kaplunov et al., J. Sound Vib., 445 (2019): 132-147



Toy problem:  three-component rod  (antisymmetric)

J. Kaplunov et al. J. Sound Vib. 366 (2016): 264-276
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Multi-component high-contrast elastic rods
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Multi-component high-contrast elastic rods

• Leading order problem 

for stiff components

Asymptotic expansions

Global low-frequency regime  . ...       ,~ 2
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Multi-component high-contrast elastic rods

• Leading order problem for soft components
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Multi-component high-contrast elastic rods

From solvability of next order for stiff components

.,...,5,3,1 ni 

Polynomial equation for frequency!
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• Leading order eigenform – piecewise linear (constant for stiff parts) 

• Next order – correction for frequencies, polynomial correction to the eigenform



Example: Five-component rod   (free ends)

Bicubic frequency equation
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• For k = 0 the solution is exact – rigid body motion!



3. Antiplane motion of concentric circular cylinders
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Antiplane motion of concentric circular cylinders

Summary of the approach

• Global low-frequency perturbation  

• Rigid body motions of stiffer components 

(at leading order)

• Leading order solution for softer components, 
involving logarithmic functions 

• Solvability of the next order problem 

for stiffer components
Polynomial equation for frequency



Example: Three-layered cylinder

Frequency 

Eigenform



Example: Five-layered cylinder

( two roots for k )Frequency

Eigenform



Example: square cylinder with a circular annular inclusion
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J. Kaplunov et al. Adv. Struct Mat. 46 (2017): 265-277



4. High-contrast three-layered plates (antisymmetric)

Preliminary remarks

• Rayleigh-Lamb dispersion 
relation for a single-layered plate

NO CHANCE OF TWO-MODE APPROXIMATIONS!

J. Kaplunov et al. Dynamics of thin walled elastic bodies, Academic Press, 1998





Low-frequency vibrations of high-contrast three-layered plates

Kaplunov et al. Int. J. Solids Struct. 113 (2017): 169-179





NEED OF TWO-MODE MODELS!

No contrast

Effect of contrast



Frequency equation

Frequency



Some three-layered structures satisfying the condition

A) Photovoltaic panels B) Laminated glass

 ~   1,~  ,1 h 1~   ,~  ,1 -1/4  h

C) Sandwich structure

2~   ,~  ,1  h

(stiff skin layers and light core layer ) (stiff skin layers and light thin core layer ) (stiff thin skin layers and light core layer )

UNEXPECTEDLY LOW FIRST SHEAR CUT-OFF FREQUENCIES!





Low-frequency dispersion behaviour

A) Photovoltaic panels
(stiff skin layers and light core layer )

UNIFORM TWO-MODE APPROXIMATIONS





CLASSICAL KIRCHHOFF-TYPE THEORY IS NOT APPLICABLE!







Low-frequency dispersion behaviour

UNIFORM TWO-MODE APPROXIMATIONS

B) Laminated glass

(stiff skin layers and light light core layer )

J. Kaplunov et al. Proc. Eng. 199 (2017): 1489-1494

1~   ,~  ,1 -1/4  h



Low-frequency dispersion behaviour

COMPOSITE APPROXIMATIONS

C) Sandwich structure

(stiff thin skin layers and light core layer )



NO  OVERLAP  REGION!



Lightweight structures

Where is transition from uniform approximation to a composite one?

Low thickness shear cut-off frequency

J. Kaplunov et al., to appear 
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Anti-plane antisymmetric motion
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Equations of motion

∂σq13
∂x1

+
∂σq23
∂x2

− ρq
∂2uq

∂t2
= 0, q = c, s,

with

σqi3 = µq
∂uq

∂xi
, i = 1, 2,

uq are out of plane displacements, σqi3 are shear stresses.



Dispersion relation

Continuity conditions along interfaces x2 = ±hc

σc23 = σs23 and uc = us.

Traction-free boundary conditions

σs23 = 0 at x2 = ±(hc + hs).

Equations of motion

∆uq −
1

(cq2)2
∂2uq

∂t2
= 0, q = c, s.

Dispersion relation

µα1 cosh(α1) cosh(α2h) + α2 sinh(α1) sinh(α2h) = 0,

with

α1 =
√

K2 − Ω2, α2 =

√
K2 − µ

ρ
Ω2,

Ω =
ωhc

cc2
, K = khc, h =

hs

hc
, µ =

µc
µs
, ρ =

ρc
ρs
.



Exact solutions for displacements and stresses

uc = hc
sinh(α1ξ2c)

α1
, σc13 = iµcK

sinh(α1ξ2c)

α1
, σc23 = µc cosh(α1ξ2c),

and

us = hcβ (cosh [α2(hξ2s + 1)]− tanh [α2(h + 1)] sinh [α2(hξ2s + 1)]) ,

σs13 = iµsKβ (cosh [α2(hξ2s + 1)]− tanh [α2(h + 1)] sinh [α2(hξ2s + 1)]) ,

σs23 = µsα2β (sinh [α2(hξ2s + 1)]− tanh [α2(h + 1)] cosh [α2(hξ2s + 1)]) ,

where

β =
sinhα1

α1

(
coshα2 − sinhα2 tanh[α2(h + 1)]

) .
Dimensionless variables

ξ2c =
x2

hc
, 0 ≤ x2 ≤ hc,

ξ2s =
x2 − hc

hs
, hc ≤ x2 ≤ hc + hs.



Long-wave low-frequency limit

Polynomial dispersion relation

µ+ γ1K
2 + γ2K

4 + γ3K
2Ω2 + γ4Ω2 + γ5Ω4 + · · · = 0,

with

γ1 =
µ

2

(
1 + h2

)
+ h,

γ2 =
µ

24

(
1 + 6h2 + h4

)
+

h

6
(1 + h2),

γ3 = − µ

12
(1 + 3h2)− h

6
− µh

12ρ
(2 + 3µh)− µh3

12ρ
(4 + µh) ,

γ4 = −µ
2
− µh

ρ

(
1 +

µh

2

)
,

γ5 =
µ

24
+
µh

12ρ
(2 + 3µh) +

µ2h3

24ρ2
(4 + µh).



Dispersion curves

No contrast

0 1.18 3.63 6.16

0.5K

Ω

µ = 0.232, ρ = 3.0, h = 1.0

Effect of contrast

00.17 3.13 4.60 6.29

0.5K

Ω

µ = 0.014, ρ = 0.03, h = 1.0

No fundamental mode. It appears in case of symmetric
motion.

The lowest cut-off frequency in case of a contrast is
Ω = 0.17

Consider two setups of the contrast:
A. Photovoltaic panels and B. Sandwich structures



A. Photovoltaic panels. Shortened polynomial dispersion relation

Plate with stiff outer layers and light core
µ� 1, h ∼ 1, ρ ∼ µ

γ1 ∼ γ2 ∼ γ3 ∼ γ4 ∼ γ5 ∼ 1.

Shortened dispersion relation

µ

h
+ K2 − 1

ρµ
Ω2 = 0.

Scaled dimensionless frequency and wavenumber

Ω2 = µαΩ2
∗ and K2 = µαK2

∗,

where Ω∗ ∼ K∗ ∼ 1 and 0 < α ≤ 1.

α covers the whole long-wave low-frequency band, given by
Ω� 1, and K� 1.



Shortened polynomial dispersion relation

Dispersion relation expressed in Ω∗ and K∗ becomes

Ω2
∗ = ρµ

(
K2

∗ +
µ1−α

h

)
.

At α < 1 we have Ω∗ ∼
√
ρµK∗ or ω ∼ cs2k, corresponding to the

short-wave limit for stiffer skin layers.

0 0.17 0.5 1.0 1.5

0.5

1.0

K

Ω



B. Sandwich structure. Shortened polynomial dispersion relation

Plate with stiff outer layers and light core
µ� 1, h ∼ µ, ρ ∼ µ2

γ1 ∼ γ2 ∼ µ and γ3 ∼ γ4 ∼ γ5 ∼ 1.

Approximate dispersion relation

µ+ µ

(
1

2
+ hµ

)
K2 − hµ

6ρµ
K2Ω2 −

(
µ

2
+

hµ
ρµ

)
Ω2 +

hµ
6ρµ

Ω4 = 0.

Normalized wavenumber and frequency

K2 = µK2
∗ and Ω2 = µΩ2

∗,

we obtain

1 +µ

(
1

2
+ hµ

)
K2

∗−µ
hµ
6ρµ

K2
∗Ω2

∗−
(
µ

2
+

hµ
ρµ

)
Ω2
∗ +µ

hµ
6ρµ

Ω4
∗ = 0.



Shortened polynomial dispersion relation

Adapt a near cut-off asymptotic expansion in the form

Ω2
∗ = Ω2

0 + µΩ2
1 + · · ·

where

Ω2
0 =

ρµ
hµ

and Ω2
1 =

ρµ
hµ

(
1

3
+ hµ

)
K2

∗ −
1

3

ρ2µ
h2
µ

,

leading to the optimal shortened dispersion relation(
hµ +

1

3

)
K2 − 1

µ

hµ
ρµ

Ω2 +

(
1− µρµ

3hµ

)
= 0.

Valid only over a narrow vicinity of the cut-off frequency!



Numerical illustration

0.1 0.14 0.2

0.5

1.0

K

Ω

µ = 0.014, ρ = 0.03, and h = 1.0



Asymptotic formulae for displacements and stresses (setup A)

Leading order displacements and stresses

uc = hcξ2c,

σc13 = iµc
√
µK∗ξ2c,

σc23 = µc,

and

us = hc,

σs13 = iµs
√
µK∗,

σs23 = µch

(
K2

∗ −
Ω2
∗

ρµ

)
(ξ2s − 1) .

We obtain
uq

hc
∼ σq23

µc
∼ σq13
µq
√
µ
, q = c, s.



Normalised displacement and stress σ23 (setup A)

ξ2 = ξ2c, u =
uc

hc
, and σ23 =

σc23
µc

, (0 < ξ2 ≤ 1)

or ξ2 = 1 + ξ2s, u =
us

hc
, and σ23 =

σs23
µc

, (1 < ξ2 ≤ 2)

0 0.5 1.0 1.5

0.5

1.0

1.5

u

ξ2

0 0.5 1.0 1.5

0.5

1.0

1.5

σ23

ξ2



Model construction (setup A)

Scaled longitudinal coordinate and time

x1 =
hc√
µ
ξ1 and t =

hc

c2c
√
µ
τ,

Normalised displacement and stresses

uq = hcv
q, σq13 = µq

√
µSq

13, σq23 = µcS
q
23, q = c, s.

with all dimensionless quantities assumed to be of order unity.

Core layer

µ
∂Sc

13

∂ξ1
+
∂Sc

23

∂ξ2c
− µ∂

2vc

∂τ2
= 0,

Sc
13 =

∂vc

∂ξ1
, Sc

23 =
∂vc

∂ξ2c
.

Skin layer

∂Ss
13

∂ξ1
+

1

h

∂Ss
23

∂ξ2s
− 1

ρµ

∂2vs

∂τ2
= 0,

Ss
13 =

∂vs

∂ξ1
, µhSs

23 =
∂vs

∂ξ2s
.



Derivation of a shortened equation (setup A)

Continuity and boundary conditions

vc
∣∣
ξ2c=1

=vs
∣∣
ξ2s=0

,

Sc
23

∣∣
ξ2c=1

=Ss
23

∣∣
ξ2s=0

,

and

Ss
23

∣∣
ξ2s=1

= 0.

Expand displacements and stresses into asymptotic series as

vq =vq
0 + µvq

1 + · · · ,
Sq
j3 =Sq

j3,0 + µSq
j3,1 + · · · , q = c, s and j = 1, 2.



Leading order problem

Sc
13,0 =

∂vc
0

∂ξ1
,

∂Sc
23,0

∂ξ2c
= 0, Sc

23,0 =
∂vc

0

∂ξ2c
,

and

∂Ss
13,0

∂ξ1
+

1

h

∂Ss
23,0

∂ξ2s
− 1

ρµ

∂2vs
0

∂τ2
= 0,

Ss
13,0 =

∂vs
0

∂ξ1
,

∂vs
0

∂ξ2s
= 0,

with

vc
0

∣∣∣
ξ2c=1

=vs
0

∣∣∣
ξ2s=0

,

Sc
23,0

∣∣∣
ξ2c=1

=Ss
23,0

∣∣∣
ξ2s=0

,

and

Ss
23

∣∣
ξ2s=1

= 0.



Leading order solution

vs
0 = w(ξ1, τ).

The rest of the quantities are expressed in terms of w as

Sc
13,0 =ξ2c

∂w

∂ξ1
, Sc

23,0 = w, vc
0 = ξ2cw,

Ss
13,0 =

∂w

∂ξ1
, Ss

23,0 = w(1− ξ2s),

with w satisfying the 1D equation

∂2w

∂ξ21
− 1

ρµ

∂2w

∂τ2
− 1

h
w = 0,

which may be presented in the original variables as

∂2us

∂x2
1

− ρs
µs

∂2us

∂t2
− µc
µshchs

us = 0,

where us(x1, t) ≈ w(x1, t).



Justification of the model

Insert ansatz us = exp {i(kx1 − ωt)} into the last equation. As a
result, we have the dispersion relation

k2 − ρs
µs
ω2 +

µc
µshchs

= 0.

Coincides with the shortened dispersion relation for setup A!



Anti-plane shear of three-layered asymmetric plates
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More sophisticated dispersion relation

µα1α2 tanh(hα1) + µ2α2
2 tanh(α2)+

µα1α2 tanh(h∗α1) + α1
2 tanh(h∗α1) tanh(α2) tanh(hα1) = 0,

where

α1 =

√
K2 − µ

ρ
Ω2, α2 =

√
K2 − Ω2,

with

Ω =
ωh2

c
(2)
2

, K = kh2,

and

h =
h1

h2
, h∗ =

h3

h2
, µ =

µ2
µ1
, ρ =

ρ2
ρ1
, c

(i)
2 =

√
µi
ρi
, i = 1, 2



Effect of contrast

No contrast

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.0

0.2

0.4

0.6

0.8

1.0

Ω

k

Contrast parameters

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Ω

k

Two modes in case of high contrast for a scalar problem!



Cut-off frequencies

Frequency equation

√
µρ

(
tan

(
h

√
µ

ρ
Ω

)
+ tan

(
h∗
√
µ

ρ
Ω

))
+ µρ tan (Ω)− tan

(
h

√
µ

ρ
Ω

)
tan (Ω) tan

(
h∗
√
µ

ρ
Ω

)
= 0.

Lowest cut-off

Ω ≈

√
µρ(h + h∗ + ρ)

hh∗µ



A. Photovoltaic panels. Two-mode approximation

Shortened polynomial dispersion relation for two modes

G1K
2+G2Ω2+G3K

4+G4K
2Ω2+G5Ω4+G6K

4Ω2++G7K
2Ω4 = 0

Out[ ]=

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

ω

k Appr Dispersion Relation

Exact Dispersion Relation



Coated half-space

H.-H. Dai, J. Kaplunov, D.A. Prikazchikov. A long-wave model for the surface elastic wave in a coated half-space. Proc. Roy. Soc. A,

466, 3097–3116 (2010)

Singularly perturbed hyperbolic equation on the interface x3 = 0

ϕ,11 − c−2
R ϕ,tt − bhϕ,111 = ARP,

isotropic coating b =
µ0

2µB
(1− β2

R)

(
c2R
c220

(αR + βR)− 4βR

(
1− c220

c210

))
orthorhombic coating b =

c066
2µB

(1− β2
R)

(
c2R
c260

(αR + βR)− 4βR
c2c0
c260

)
,

with c260 = c066/ρ0, c2c0 =
(
c011c

0
22 − (c012)2

)
/ρ0.
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Hyperbolic-elliptic model for the Rayleigh wave on an isotropic
half-space

• Formulation of the problem: (−∞ < x1 <∞, 0 ≤ x3 <∞)

Equations of motion c
2
1∆ϕ− ϕ,tt = 0, c

2
2∆ψ − ψ,tt = 0.

Boundary conditions σ33

∣∣
x3=0

= P (x1, t), σ31

∣∣
x3=0

= Q(x1, t).

• Asymptotic model:

Elliptic equations ϕ,33 + α
2
Rϕ,11 = 0, ψ,33 + β

2
Rψ,11 = 0,

where αR =

√
1 −

c2R
c21
, βR =

√
1 −

c2R
c22
.

Potentials are related ϕ(x1 − cRt, αRx3) = γψ(x1 − cRt, αRx3).

Hyperbolic equations on the surface x3 = 0

ϕ,11 − c
−2
R ϕ,tt = ARP, ψ,11 − c

−2
R ψ,tt = −ARQ.

where AR =
1 + β2

R

2µB
, B =

αR

βR

(1 − β
2
R) +

βR

αR

(1 − α
2
R) − 1 + β

4
R.

Kaplunov, J., Prikazchikov, D.A.: Asymptotic theory for Rayleigh and Rayleigh-type waves. Advances in Applied Mechanics

50, 1–106 (2017)



Clamped surface

Homogeneous half-space

⇒ No surface wave

Inhomogeneous half-space

Rigorous mathematical analysis proves a possibility of localized waves

K.D. Cherednichenko, S. Cooper. On the existence of high-frequency boundary resonances in layered elastic media. Proc. R. Soc.

A, 471(2178), 20140878 (2015)



Coated half-space with fixed surface. Problem statement

Equations of motion

σ±
i1,1 + σ±

i3,3 − ρ
±u±

i,tt = 0, i = 1, 3.

Constitutive relations

σ±
ij = λ±δij(u

±
1,1 + u±

2,2 + u±
3,3) + µ±(u±

i,j + u±
j,i), j = 1, 3.

Boundary conditions at x3 = −h

u−
i = 0.

– Novelty!

Continuity conditions at x3 = 0

u−
i = u+

i , σ−
i3 = σ+

i3.



Coated half-space with fixed surface. Exact solution

Elastic wave potentials

u±
1 =

∂ϕ±

∂x1
− ∂ψ±

∂x3
, u±

3 =
∂ϕ±

∂x3
+
∂ψ±

∂x1
.

Wave equations

∆ϕ± − 1

(c±1 )2
∂2ϕ±

∂t2
= 0, ∆ψ± − 1

(c±2 )2
∂2ψ±

∂t2
= 0,

where c±1 =

√
λ± + 2µ±

ρ±
, c±2 =

√
µ±

ρ±
and ∆ =

∂2

∂x1
+

∂2

∂x3
.

The sought for wave potentials

ϕ− = [A1 cos(α−kx3) +A2 sin(α−kx3)]eik(x1−ct),

ψ− = [A3 cos(β−kx3) +A4 sin(β−kx3)]eik(x1−ct),

ϕ+ = A5eik(x1−ct)−α
+kx3 , ψ+ = A6eik(x1−ct)−β

+kx3 ,

where

α− =

√
c2

(c−1 )2
− 1, α+ =

√
1− c2

(c+1 )2
, β− =

√
c2

(c−2 )2
− 1, β+ =

√
1− c2

(c+2 )2
.



Analysis of full dispersion relation

Dispersion relation detA = 0, where A is a 6× 6 matrix.

Material parameter (relative stiffness) µ =
µ−

µ+
.

Dimensionless variables ζ =
c

c+2
, Ω+ =

ωh

c+2
, K = kh.

Numerical values ρ− = 150, ρ+ = 250, ν− = 0.3, ν+ = 0.25.

µ = 0.1 µ = 0.3 µ = 0.5
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Love waves

Dispersion relation tan(Kβ−) +
µβ−

β+
= 0.

μ=0.1
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Existence of surface waves

     Existence triangle
     c2

-  < c2
+

      or 
      

μ-

μ+
< ρ-

ρ+

c = c2
+

c = c2
-

0 2 4 6 8 10
0

2

4

6

8

10

Ω+

K

Initial points
c = c+2 ⇒ β+ → 0⇒ tan(Kβ−)→∞

Ω+
in = Kin =

πn

2

√
ρ

µ
− 1

, n = 1, 3, ...

Approximations for K � 1
c→ c−2 ⇒ β− → 0⇒ tan(Kβ−)→ 0

Kβ− = πm, m = 1, 2, ...



Analysis of full dispersion relation

Initial points

R(Ω+) = 0,

where R(Ω+) = detA at c = c+2 or K = Ω+.

μ=0.31
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Approximations for K � 1

Similarly to the Love waves

Ω+ =
c−2
c+2

√
π2m2 +K2

m = 1, 2, ...
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Analysis of full dispersion relation

High contrast (soft layer, stiff half-space)
µ = 0.001

Rayleigh wave

Thickness shear resonances

Thickness stretch resonance

0.0 0.1 0.2 0.3 0.4 0.5

0.0

0.1

0.2

0.3

0.4

0.5

Ω+

K

⇓
Inspiration for using the asymptotic model for Rayleigh-type waves

The thickness resonances are
eigenvalues of the problems

u−
3,33 +

(
Ω−

κ−

)2

u−
3 = 0,

u−
1,33 + (Ω−)2u−

1 = 0

with u−
i = 0, i = 1, 3 at the faces.

u−
i = 0

u−
i = 0

stretch
shear



Thin coating

Effective boundary
⇒ conditions for

stresses at x3 = 0

Dirichlet boundary conditions

u−
i = 0, x3 = −h, u−

i = vi, x3 = 0,

where vi are prescribed values.

Small parameter (long-wave approximation)

ε =
h

l
� 1.

Dimensionless variables

ξ1 =
x1
l
, ξ3 =

x3 + h

h
, Ω− =

ωh

c−2

Therefore Ω− = Ω+ c
+
2

c−2
= Ω+

√
ρ

µ
with ρ =

ρ−

ρ+
.



Thin coating. Asymptotic procedure

Method of direct asymptotic integration of 3D equations in linear elasticity

Goldenveizer, A.L., Kaplunov, J.D., Nolde, E.V.: On Timoshenko-Reissner type theories of plates and shells. Int. J. Solids Struct.,

30, 675-694 (1993)

Kaplunov, J., Prikazchikov, D., Sultanova, L.: Justification and refinement of Winkler–Fuss hypothesis. Z. Angew. Math. Phys.

69(3), 80 (2018)

Scaling of the displacements and stresses

u−
i = hu∗−

i , σ−
ij = µ−σ∗−

ij , Ω− ∼ 1, vi = hv∗i .

Note that Ω− ∼ 1 is associated with high-frequency localized wave.

Governing equations

εσ∗−
i1,1 + σ∗−

i3,3 + (Ω−)2u∗−
i = 0, σ∗−

11 = ε(κ−)2u∗−
1,1 + ((κ−)2 − 2)u∗−

3,3,

σ∗−
33 = ε((κ−)2 − 2)u∗−

1,1 + (κ−)2u∗−
3,3, σ∗−

13 = u∗−
1,3 + εu∗−

3,1,

where κ± =
c±1
c±2

=

√
2− 2ν±

1− 2ν±
.

Boundary conditions u∗−
i = 0, ξ3 = 0, u∗−

i = v∗i , ξ3 = 1.



Thin coating. Leading order

Asymptotic series
(
u∗−
i

σ∗−
ij

)
=

(
u
−(0)
i

σ
−(0)
ij

)
+ ε

(
u
−(1)
i

σ
−(1)
ij

)
+ ...

Leading order equations

σ
−(0)
i3,3 + (Ω−)2u

−(0)
i = 0, σ

−(0)
11 = ((κ−)2 − 2)u

−(0)
3,3 ,

σ
−(0)
33 = (κ−)2u

−(0)
3,3 , σ

−(0)
13 = u

−(0)
1,3 .

Leading order boundary conditions

u
−(0)
i = 0, ξ3 = 0, u

−(0)
i = v∗i , ξ3 = 1.

Leading order stresses

σ
−(0)
33 =

κ−Ω−v∗3

sin

(
Ω−

κ−

) cos

(
Ω−

κ− ξ3

)
, σ

−(0)
13 =

Ω−v∗1
sin(Ω−)

cos(Ω−ξ3).

Sinusoidal, not polynomial thickness variation!



Thin coating. Asymptotic effective boundary conditions

Asymptotic dynamic effective boundary conditions at the interface x3 = 0

σ+
33 = µ−κ−Ω+

√
ρ

µ

v3
h

cot

(
Ω+

κ−

√
ρ

µ

)
,

σ+
13 = µ−Ω+

√
ρ

µ

v1
h

cot

(
Ω+

√
ρ

µ

)
.

Non-traditional effective boundary conditions, corresponding to
high-frequency long-wave phenomena failing at thickness resonances(

sin

(
Ω+

κ−

√
ρ

µ

)
= sin

(
Ω+

√
ρ

µ

)
= 0

)
.

Kaplunov, J.D., Kossovitch, L.Yu., Nolde, E.V.: Dynamics of thin walled elastic bodies. Academic Press (1998)

Kaplunov, J., Krynkin, A.: Resonance vibrations of an elastic interfacial layer. J. Sound Vib. 294(4-5), 663–677 (2006)



Model for Rayleigh-type waves on a stiff half-space

Kaplunov, J., Prikazchikov, D.A.: Asymptotic theory for Rayleigh and Rayleigh-type waves. Advances in Applied Mechanics 50,

1–106 (2017)

Displacements at the surface x3 = 0

v1 =
1− β2

R

2
ϕ,1, v3 = −1− β2

R

1 + β2
R

ϕ,3.

Hyperbolic equation for the volume wave potential at the interface

ϕ,11 −
1

c2R
ϕ,tt = A(P + ϑQ) = Ã ϕ,1.

Here P (x1, t) = σ+
33 and Q(x1, t) = σ+

13, and the bar may be interpreted in a
sense of the Hilbert transform.



Effect of contrast (soft coating)

Considering at the boundary x3 = 0 the potential ϕ = Beik(x1−ct) with k > 0

ζ2

ζ2R
−√µργζ − 1 = 0,

where ζ =
c

c+2
, ζR =

cR

c+2
, and

γ = KR

[
cot

(
Ω+

√
ρ

µ

)
+ κ− cot

(
Ω+

κ−

√
ρ

µ

)]
,

with Ω+ =
ωh

c+2
.

Asymptotic series ζ = ζ(0) +
√
µζ(1) + ...

Small parameter for soft coating
(
µ =

µ−

µ+
� 1

)
At leading order ζ(0) = ζR.

Correction
2ζ(0)ζ(1)

ζ2R
−√ργζ(0) = 0 ⇒ ζ(1) =

1

2
ζ2R
√
ργ.



Effect of high contrast (soft coating)

Non-uniform approximation for dimensionless velocity

ζ = ζR +
√
µ

(√
ρ

2
γ ζ2R

)
+ ...

Note, γ is the source of non-uniformity, since γ →∞ at

Ω+ =

√
µ

ρ
πn and Ω+ = κ−

√
µ

ρ
πn, n = 0, 1, 2, ...



Numerical results

Numerical values ρ− = 150, ρ+ = 250, ν− = 0.3, ν+ = 0.25.

µ = 0.01 µ = 0.001



6. Periodic structures 

R. Craster, L. Joseph, J. Kaplunov, Wave Motion, 2014, 51, 581-588

• Similarity between asymptotic procedures for thin and periodic structures

• Knowledge transfer from theory of plates and shells to homogenisation

• High-frequency homogenisation



Industrial motivation

Functionally graded microstructures

the picture is taken from NASA webpage



Industrial motivation

Civil structures

the picture is taken from http://www.wikipedia.org



Industrial motivation

Photonic crystals

the picture is taken from the review of P Russell, Science 2003



Dynamic homogenization

Two toy problems

The goal is to demonstrate the similarity of the homogenization

procedures for 2D thin functionally graded structures and 1D periodic

structures, see R.V. Craster, L.M. Joseph & J. Kaplunov in Wave Motion

2014.

(A) SH waves in a functionally graded layer (2D problem)

x

h

-h

y

0

(B) Longitudinal waves in a periodic rod (1D problem)

xh-h 0



Dynamic homogenization

Problem A

∂2u

∂x2
+

∂2u

∂y2
+

ω2

c2(y)
u = 0

where u = u(x, y)

Problem B

d2u

dx2
+

ω2

c2(x)
u = 0

where u = u(x)

traction free faces

∂u/∂y|y=±h = 0

periodicity

c(x) = c(x+ 2h)

Small parameter

ǫ = h/L ≪ 1 (L is typical wavelength along x-axis)

Scaling

X = x/L, ξ = α/h, where

α = y α = x



Dynamic homogenization

Dimensionless equations in u(X, ξ)

uξξ + ǫ2uXX + λ2

C2(ξ)
u = 0 uξξ + 2ǫuXξ

︸ ︷︷ ︸

the only difference

+ǫ2uXX + λ2

C2(ξ)
u = 0

with λ = ωh
c0

and C(ξ) = c(ξ)
c0

Classical low frequency limit (λ ∼ ǫ)

u(X, ξ) = u0(X, ξ) + ǫu1(X, ξ) + ǫ2u2(X, ξ) + . . .

and

λ2 = ǫ2
(
λ2
0 + ǫλ2

1 + ǫ2λ2
2 + . . .

)

with Neumann boundary conditions

uiξ|ξ=±1 = 0

with periodicity conditions

ui(X, 1) = ui(X,−1),
uiξ(X, 1) = uiξ(X,−1)



Dynamic homogenization

At leading order we get over a microscale

u0ξξ = 0
resulting in uniform static variation along thickness or cell

u0(X, ξ) = v0(X).

ξ

u0(X, ξ)

0

v0(X )

1-1

Proceeding to higher orders

u1(X, ξ) = 0, λ1 = 0 and u2ξξ = −v0XX −
λ2
2

C2(ξ)
v0

Finally, we arrive at 1D homogenized equation

d2v0
dx2

+
ω2

〈c〉2
v0 = 0, with 〈c〉 =

[
1

2h

∫ h

−h
c−2(z)dz

]−1/2



Dynamic homogenization

Non-classical high frequency limit (λ ∼ 1)

The so-called high frequency long wave theory for thin elastic structures established some time ago

(e.g. see J.D.Kaplunov, L.Yu.Kossovich & E.V.Nolde, Dynamics of Thin Walled Elastic Bodies,

Academic Press, N.-Y. 1998) inspired a more recently developed high frequency homogenization

procedure (see R.V.Craster, J.Kaplunov & A.V.Pichugin in Proc R Soc A 2010, J.Kaplunov & A.Nobili

in Math Meth Appl Sci 2017, and D.J.Colquitt, V. Danishevsky & J.Kaplunov in Math Mech Solids

2018)

At leading order u0(X, ξ) = v0(X)U0(ξ) and U0ξξ +
λ2

0

C2(ξ)
U0 = 0

with Neumann boundary conditions

U0ξ|ξ=±1 = 0

with periodicity conditions

U0(X, 1) = U0(X,−1),
U0ξ(X, 1) = U0ξ(X,−1)

or antiperiodicity conditions (leading to

periodicity with a double period)

U0(X, 1) = −U0(X,−1),
U0ξ(X, 1) = −U0ξ(X,−1)



Dynamic homogenization

Eigenvalues λ0 correspond to

thickness resonances cell resonances

ξ

U0(ξ)

0 1-1

The sought for 1D homogenized equation is

h2Tv0xx + (λ2 − λ2
0)v0 = 0

T =

∫ h

−h
U2

0 (z)C
−2(z)dz

∫ h

−h
U2

0 (z)dz

T takes slightly more complicated form

(see R.V.Craster, J.Kaplunov & A.V.Pichugin in

Proc R Soc A 2010)



Dynamic homogenization

Floquet-Bloch waves

[
u(−1)
uξ(−1)

]

= exp(i2κε)

[
u(1)
uξ(1)

]

where κ - Bloch parameter.

Bloch spectra λ(κ) near edges of stop bands

κ = 0 κ =
π

2ε

almost periodic solutions almost anti-periodic solutions



Dynamic homogenization

a) piecewise uniform sound speed (constant coefficients)

ξ

C(ξ)

1

r

−1 0 1

b) Mathieu’s equation (variable coefficients)
C−2(ξ) = α− 2θ cos ξ



Dynamic homogenization

Piecewise uniform rod (r = 1/3)
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Dynamic homogenization

Mathieu’s equation (α = 1, θ = 1/2)
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Dynamic homogenization

High frequency homogenization in 2D
(see R.V.Craster, J.Kaplunov & A.V.Pichugin in Proc R Soc A 2010)

L

2l

∇x · [a(x)∇xu(x)] + ω2ρ(x)u(x) = 0

with double periodic a(x) and ρ(x), where x = (x1, x2)

Small parameter ǫ = l/L ≪ 1

Scaling X =
x

L
, ξ =

x

l



Dynamic homogenization

Asymptotic series

u(X, ξ)=u0(X, ξ) + εu1(X, ξ) + ε2u2(X, ξ) + . . .
and

λ2 = λ2

0
+ ελ2

1
+ ε2λ2

2
+ . . . , where λ =

ωl

c0

Double periodicity - antiperiodicity conditions

ui (X;−1, ξ2) = ±ui (X; 1, ξ2)
uiξ1 (X;−1, ξ2) = ±uiξ1 (X; 1, ξ2)
ui (X; ξ1,−1) = ±ui (X; ξ1, 1)
uiξ2 (X; ξ1,−1) = ±uiξ2 (X; ξ1, 1)

At leading order

u0 (X, ξ) = v0 (X)U0 (ξ)
and

∇ξ · [a(ξ)∇ξU0] + λ2

0
c2
0
ρ(ξ)U0 = 0 (*)

with periodicity - antiperiodicity conditions on cell contour



Dynamic homogenization

The final macroscale equation becomes

l2Tij

∂2v0
∂xi∂xj

+
(
λ2 − λ2

0

)
v0 = 0 (i, j = 1, 2) (**)

with Tij expressed through double integrals over the domain −1 ≤ ξ1, ξ2 ≤ 1 containing

double periodic eigenfunction U0 (ξ) and a pair of single periodic functions Vi (ξ),
calculated from non-homogeneous boundary value problems for the equation (*).

Remarks.

(i) The equation (**) is valid near edges of stop bands.

(ii) The type of the equation (**) depends on problem parameters.

(iii) Simple explicit expressions for the coefficients Tij are available only in the case of the
checkerboard structures with piece-wise parameters governed by (see R.V.Craster,
J.Kaplunov, E.Nolde & S.Guenneau, JOSA 2011)

∂2u

∂x2
1

+
∂2u

∂x2
2

+
ω2

c2
[1 + g(x1) + g(x2)]u = 0

where gi(xi) = 0 for − 1 ≤ xi < 0; gi(xi) = r2 for 0 ≤ xi < 1



Dynamic homogenization

Applications of high frequency homogenization theory

for checkerboards in optics

Defect modes



Dynamic homogenization

Ultra-refraction



Dynamic homogenization

All-angle negative refraction

For further detail see R.V.Craster, J.Kaplunov, E.Nolde & S.Guenneau, JOSA 2011



Dynamic homogenization

High frequency homogenization for lattice structures

e.g. see R.V.Craster, J.Kaplunov & J.Postnova, QJMAM 2010 for spring mass structures

and E.Nolde, R.V.Craster & J.Kaplunov, JMPS 2011 for frame and truss structures

(2n,2m) (2n+1,2m)

(2n,2m+1) (2n+1,2m+1)

The square lattice

(2n,2m) (2n+1,2m)

(2n,2m+1) (2n+1,2m+1)

Two-scale approach

u = u (X, ξ)

continuous discrete

(ξ = {(0, 0), (0, 1), (1, 0), (1, 1)})

By applying Taylor series in X and periodicity - antiperiodicity conditions we arrive at a

matrix-differential problem [4× 4]. It is
[

(A0 − λ2M)
︸ ︷︷ ︸

+εA1(∂i, λ) + ε2A2(∂i∂j , λ) + ...

]

u(X, ξ) = 0

linear algebra

with ε = 1/N ≪ 1, ∂i = ∂/∂Xi, M = diag (M1,M1,M2,M2)



Dynamic homogenization

Variety of homogenized models

e.g. for periodicity in both directions when u (X, ξ) = v0 (X) [0, 0,−1, 1]T

The result is

l4

4 (M2 −M1)

(
∇4

xv0 − 4∂2
x1
∂2
x2
v0
)
+

(

λ2 −
4

M2

)

v0 = 0

which is particularly handy for analyzing localized phenomena.
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Concluding remarks

 Multi-component high-contrast waveguides require specialised theory

 High contrast may lead to unexpectedly low natural frequencies

 Stronger components subject to Neumann conditions, perform almost rigid body motions

 Two-mode theories for long-wave low-frequency motion of layered plates

(asymptotically uniform or composite)

 Deep parallels between long-wave dispersion of thin and periodic structures
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