Guided waves in phononic crystals 2019 Cargese Summer School on guided waves

Vincent Laude

Institut FEMTO-ST Centre National de la Recherche Scientifique (CNRS), Univ. Bourgogne Franche-Comté, Besançon, France

August 2019

- 1. Introduction to phononic crystals and waves in periodic media
- 2. Bulk waves in sonic crystals
- 3. Bulk waves in phononic crystals
- 4. Surface and plate waves in phononic crystals
- 5. Acoustic/elastic coupling
- 6. Evanescent Bloch waves
- 7. Locally-resonant crystals
- 8. Mirrors, waveguides, and cavities
- 9. Coupled-resonator phononic waveguides
- 10. References

Introduction to phononic crystals and waves in periodic media

Artificial crystals

Figure: Artificial crystals for waves with 1D, 2D, or 3D periodicity

- Sonic crystal: matrix is a fluid (e.g., water or air)
- Phononic crystal: matrix is a solid (e.g., steel, silicon, quartz...) [1]
- Inclusions can be void, solid, or fluid

Sonic crystal of cylindrical steel rods in water

A square-lattice phononic crystal of steel rods in water I

- Pitch: 100 μ m
- Diameter: 70 μ m
- Complete band gap: 8-9 MHz
- Plane source emits 1 Pa

A square-lattice phononic crystal of steel rods in water II

A coupled-cavity phononic crystal waveguide

- Coupled-resonator acoustic waveguide
- Works inside complete band gap only
- Complete band gap: 8-9 MHz
- Arc circle source emits1 Pa

Bravais Lattices, 2D

Figure: The five two-dimensional Bravais lattices. (a) Oblique (b) Rectangular (c) Centered rectangular (d) Hexagonal (e) Square. $R = n_1 a_1 + n_2 a_2 + n_3 a_3$

Bravais lattices, 3D

There are 14 possible Bravais lattices in 3D space: Triclinic, Monoclinic, Orthorhombic, Tetragonal, Rhomboedral, Hexagonal, Cubic.

Figure: Three-dimensional cubic Bravais lattices. Simple cubic (SC), body-centered cubic (BCC), and face-centered cubic (FCC) lattices.

Primitive cell

The unit cell is any geometric "box" containing "atoms" arranged in 2- or 3-dimensions. Unit cells stacked periodically form the crystal without leaving any empty space.

Figure: Wigner-Seitz cells for the square lattice, the hexagonal lattice, and the honeycomb lattice. Close packing condition: inclusions are touching but non-overlapping.

Reciprocal lattice, Brillouin zones

- Reciprocal lattice = Bravais lattice in which the Fourier transform of the wavefield is represented, i.e. $\exp(-iK \cdot R) = 1$.
- Reciprocal lattice vectors are $\boldsymbol{K} = m_1 \boldsymbol{b}_1 + m_2 \boldsymbol{b}_2 + m_3 \boldsymbol{b}_3$ with $\boldsymbol{b}_j \cdot \boldsymbol{a}_i = 2\pi \delta_{ij}$.
- First Brillouin zone = Wigner-Seitz cell of the reciprocal lattice.

Figure: First Brillouin zones for the square and the hexagonal lattices. $b=2\pi/a$

Linear chain I

Linear chains

Linear chain of punctual masses m connected by springs: $m\frac{\partial^2 u_n}{\partial t^2} = C(u_{n+1} - u_n) + C(u_{n-1} - u_n)$.

Figure: A linear chain of masses coupled by springs. $\Omega^2 = 2C/m$.

Linear chain II

Discrete Fourier transform (DFT) of the sequence u_n

$$\check{u}(q) = \sum_{n=-\infty}^{\infty} u_n \exp(2\imath \pi q n), q \in [-1/2, 1/2],$$

with the inverse formula

$$u_n = \int_{-1/2}^{1/2} \mathrm{d}q \, \widecheck{u}(q) \exp(-2\imath \pi q n).$$

Taking the DFT of the linear chain equation,

$$m\frac{\partial^2 \check{u}(q)}{\partial t^2} = C(\exp(2\imath\pi q) + \exp(-2\imath\pi q) - 2)\check{u}(q) = 2C(\cos(2\pi q) - 1)\check{u}(q).$$

Time-harmonic solutions follow the dispersion relation

$$\omega^2 = \Omega^2(1-\cos(2\pi q)) = \Omega^2(1-\cos(\mathit{ka}))$$

with $\Omega^2 = 2C/m$ and $2\pi g = ka$.

Bilinear chain L

masses coupled by springs.

Linear chain with two types of punctual masses, or two types of atoms:

$$m_1 \frac{\partial^2 u_n}{\partial t^2} = C(v_n - u_n) + C(v_{n-1} - u_n),$$

$$m_2 \frac{\partial^2 v_n}{\partial t^2} = C(u_{n+1} - v_n) + C(u_n - v_n).$$

Taking the DFT, and with $\Omega_1^2 = 2C/m_1$ and $\Omega_2^2 = 2C/m_2$.

$$\begin{array}{lcl} \frac{\partial^2 \check{u}(q)}{\partial t^2} & = & \frac{\Omega_1^2}{2}(1+\exp(-2\imath\pi q))\check{v}(q) - \Omega_1^2 \check{u}(q), \\ \frac{\partial^2 \check{v}(q)}{\partial t^2} & = & \frac{\Omega_2^2}{2}(1+\exp(2\imath\pi q))\check{u}(q) - \Omega_2^2 \check{v}(q). \end{array}$$

Bilinear chain II

Time-harmonic solutions are such that

$$(\omega^2 - \Omega_1^2) \check{u}(q) + \frac{\Omega_1^2}{2} (1 + \exp(-2\imath \pi q)) \check{v}(q) = 0,$$

 $(\omega^2 - \Omega_2^2) \check{v}(q) + \frac{\Omega_2^2}{2} (1 + \exp(2\imath \pi q)) \check{u}(q) = 0.$

These equations are compatible only if the determinant vanishes, leading to the implicit dispersion relation

$$(\omega^2 - \Omega_1^2)(\omega^2 - \Omega_2^2) = \frac{1}{2}\Omega_1^2\Omega_2^2(1 + \cos(ka))$$

Solving for ω as a function of k we obtain the explicit dispersion relation

$$\omega^{2} = \frac{1}{2}(\Omega_{1}^{2} + \Omega_{2}^{2}) \pm \frac{1}{2}\sqrt{\Omega_{1}^{4} + \Omega_{2}^{4} + 2\Omega_{1}^{2}\Omega_{2}^{2}\cos(\textit{ka})}$$

Bilinear chain III

Figure: Band structure

- Band gap for frequencies between Ω_1 and Ω_2 : there are no propagating Bloch waves.
- Same for $\omega > \Omega_2$.

Bilinear chain IV

We can obtain the explicit dispersion relation $k(\omega)$, with $k = k_r + i k_i$:

- lacksquare First band gap, $k_i a = \pm \cosh^{-1}\left(1-\left(rac{\omega^2}{\Omega_1^2}-1
 ight)\left(rac{\omega^2}{\Omega_2^2}-1
 ight)
 ight)$.
- lacksquare Above the second band, $k_i a = \pm \cosh^{-1}\left(\left(rac{\omega^2}{\Omega_1^2} 1
 ight)\left(rac{\omega^2}{\Omega_2^2} 1
 ight) 1
 ight)$.

3

Figure: Complex band structure

Bloch theorem

Helmholtz equation with periodic coefficients: $-\nabla \cdot (c(\mathbf{r})\nabla u(\mathbf{r})) = \omega^2 u(\mathbf{r})$

Theorem (Bloch)

The eigenmodes of the periodic Helmholtz equation are Bloch waves of the form

$$u(\mathbf{r}) = \exp(-\imath \mathbf{k} \cdot \mathbf{r}) \tilde{u}(\mathbf{r})$$

where $\tilde{u}(\mathbf{r})$ is a periodic function with the same periodicity as the crystal and \mathbf{k} is the Bloch wave vector.

Demonstration: see [2]

One-dimensional sinusoidal grating I

Figure: (a) Sinusoidal modulation. (b) Empty lattice model.

Sinusoidal modulation of the celerity in the 1D wave equation

$$\frac{\partial^2 u}{\partial t^2} - c^2(x) \frac{\partial^2 u}{\partial x^2} = 0, \quad c^2(x) = c_0^2 + c_1^2 \sin(2\pi x/a)$$

One-dimensional sinusoidal grating II

Bloch waves in the form $u(t,x) = \tilde{u}(x) \exp(i(\omega t - kx))$. Fourier series representation:

$$\tilde{u}(x) = \sum_{p=-\infty}^{\infty} \tilde{u}_p \exp(-2\imath\pi px/a).$$

$$\frac{\partial^2 u(t,x)}{\partial t^2} = -\omega^2 \exp(\imath\omega t) \sum_p \tilde{u}_p \exp(-\imath(k+pb)x)$$

$$\frac{\partial^2 u(t,x)}{\partial x^2} = -\exp(\imath\omega t) \sum_p (k+pb)^2 \tilde{u}_p \exp(-\imath(k+pb)x).$$

$$(c_0^2(k+pb)^2 - \omega^2) \tilde{u}_p + \frac{c_1^2}{2\imath} (k+(p+1)b)^2 \tilde{u}_{p+1} - \frac{c_1^2}{2\imath} (k+(p-1)b)^2 \tilde{u}_{p-1} = 0.$$

$$\begin{pmatrix} -\frac{c_1^2}{2i}(k-2b)^2 & c_0^2(k-b)^2 - \omega^2 & \frac{c_1^2}{2i}k^2 & 0\\ 0 & -\frac{c_1^2}{2i}(k-b)^2 & c_0^2k^2 - \omega^2 & \frac{c_1^2}{2i}(k+b)^2\\ 0 & -\frac{c_1^2}{2i}k^2 & c_0^2(k+b)^2 - \omega^2 \end{pmatrix} \begin{pmatrix} \tilde{u}_{-1}\\ \tilde{u}_0\\ \tilde{u}_1 \end{pmatrix} = 0.$$

One-dimensional sinusoidal grating III

Figure: Complex band structure $k(\omega)$

Around the crossing $\omega = c_0 b/2$ and k = b/2:

$$\begin{pmatrix} c_0^2(k-b)^2 - \omega^2 & \frac{c_1^2}{2z}k^2 \\ -\frac{c_1^2}{2z}(k-b)^2 & c_0^2k^2 - \omega^2 \end{pmatrix} \begin{pmatrix} \tilde{u}_{-1} \\ \tilde{u}_{0} \end{pmatrix} = 0,$$

Dispersion relation:
$$\left| (c_0^2 (k-b)^2 - \omega^2)(c_0^2 k^2 - \omega^2) - \frac{c_1^4}{4} k^2 (k-b)^2 = 0 \right|$$