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Introduction

Artificial crystals

Figure: Artificial crystals for waves with 1D, 2D, or 3D periodicity

m Sonic crystal: matrix is a fluid (e.g., water or air)
m Phononic crystal: matrix is a solid (e.g., steel, silicon, quartz...) [1]
m Inclusions can be void, solid, or fluid
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Sonic crystal of cylindrical steel rods in water
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Figure: 2D square-lattice
sonic crystal. d/a =0.83

Reduced wavenumber, ka/2w
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Introduction

A square-lattice phononic crystal of steel rods in water |

freqacpr(y = 1085 Max: 3.0
Surface: Pressure [Pa] 3

m Pitch: 100 um
m Diameter: 70 pum

m Complete band gap:
8-9 MHz

m Plane source emits 1 Pa
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Introduction

A square-lattice phononic crystal of steel rods in water
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A coupled-cavity phononic crystal waveguide

freqacpr(y=8e5 Max: 15.0
Surface: Pressure [Pa] 15

m Coupled-resonator
acoustic waveguide

m Works inside complete
band gap only

m Complete band gap:
8-9 MHz

m Arc circle source emits
1 Pa
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Bravais lattices

Bravais Lattices, 2D
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Figure: The five two-dimensional Bravais lattices. (a) Oblique (b) Rectangular (c) Centered
rectangular (d) Hexagonal (e) Square. R = ma; + nza2 + nzas
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Bravais lattices

Bravais lattices, 3D

There are 14 possible Bravais lattices in 3D space: Triclinic, Monoclinic, Orthorhombic,
Tetragonal, Rhomboedral, Hexagonal, Cubic.
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Figure: Three-dimensional cubic Bravais lattices. Simple cubic (SC), body-centered cubic (BCC), and
face-centered cubic (FCC) lattices.
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Bravais lattices

Primitive cell

The unit cell is any geometric “box” containing “atoms” arranged in 2- or 3-dimensions. Unit
cells stacked periodically form the crystal without leaving any empty space.
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Figure: Wigner-Seitz cells for the square lattice, the hexagonal lattice, and the honeycomb lattice.
Close packing condition: inclusions are touching but non-overlapping.
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Bravais lattices

Reciprocal lattice, Brillouin zones

Bravais lattice in which the Fourier transform of the wavefield is represented,

m Reciprocal lattice =
i.e. exp(—iK-R)=1.
m Reciprocal lattice vectors are K = miby + ma2ba + mzbs with b - a; = 27dj;.

m First Brillouin zone = Wigner-Seitz cell of the reciprocal lattice.
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Figure: First Brillouin zones for the square and the hexagonal lattices. b = 27/a
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Linear chains

Linear chain |

. . . 2
Linear chain of punctual masses m connected by springs: maat‘;" = C(unt1 — un) + C(un—1 — un).
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Figure: A linear chain of masses coupled by springs. Q> =2C/m.
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Linear chains

Linear chain 1l

Discrete Fourier transform (DFT) of the sequence u,

e}

t(q) = > unexp(2umgn),q € [-1/2,1/2],

n=—oo
with the inverse formula

1/2
Up = / dq u(q) exp(—2wmqn).
~1/2
Taking the DFT of the linear chain equation,
9*u(q) . .
m—pa = C(exp(2vmrq) + exp(—2wmq) — 2)U(q) = 2C(cos(2mq) — 1)i(q).

Time-harmonic solutions follow the dispersion relation

w® = Q%(1 — cos(2mq)) = Q*(1 — cos(ka))

with Q> = 2C/m and 27wq = ka.
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Bilinear chain |

m C mm C m C mm (C
e @\ @)@\ @\ —eee  Figure: A bilinear chain of

) 2 masses coupled by springs.
a

Linear chain with two types of punctual masses, or two types of atoms:

0 un

my atL; = C(Vn - Un) + C(anl - un)7
0?v,

ma Bt‘; = C(tnt1— Va) + C(un — va).

Taking the DFT, and with Q3 =2C/my and Q% = 2C/ma,
82v Q2 . .
H9) — B0t exp(—2ma)i(q) — Ri(a).

88‘7t(2q) = %(1 + exp(2umq))t(q) — B3V(q).
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Linear chains

Bilinear chain I

Time-harmonic solutions are such that

(7~ 9R)i(a) + (1 + exp(-2ma))ila) = O,
(o~ B)ola) + L1+ ewma)i(a) = O

These equations are compatible only if the determinant vanishes, leading to the implicit dispersion
relation

(W — Q) (WP — QF) = %ngu + cos(ka))

Solving for w as a function of k we obtain the explicit dispersion relation

2
w =

(2 + Q2) + %\/Q;‘ Q4+ 20203 cos( ka)

N =
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Linear chains

Bilinear chain Il
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Figure: Band structure

m Band gap for frequencies between Q1 and »: there are no propagating Bloch waves.

m Same for w > Qs.
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Linear chains

Bilinear chain IV

We can obtain the explicit dispersion relation k(w), with k = k, + 2k;:
i 3= “1(1 (2 w?
m First band gap, kia = +cosh (1 (93 1) (Q§ )) .

m Above the second band, kja = 4 cosh™* ((g—; — 1) (% — 1) — 1) .
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! Figure: Complex
band structure
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Bloch theorem

Bloch theorem

Helmholtz equation with periodic coefficients: —V - (c(r)Vu(r)) = w?u(r)

Theorem (Bloch)

The eigenmodes of the periodic Helmholtz equation are Bloch waves of the form
u(r) = exp(—k - r)u(r)

where @(r) is a periodic function with the same periodicity as the crystal and k is the Bloch
wave vector.

Demonstration: see [2]
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Bloch theorem

One-dimensional sinusoidal grating |

> 3b
— Co o
= % 2b Figure: (a) Sinusoidal
© b modulation. (b) Empty
lattice model.
(a) 0 (b) ©
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Sinusoidal modulation of the celerity in the 1D wave equation

d%u &u

e cz(x)ﬁ =0, *(x)=c +cisin(2nx/a)
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Bloch theorem

One-dimensional sinusoidal grating I

Bloch waves in the form u(t, x) = @i(x) exp(¢(wt — kx)). Fourier series representation:

i(x) = Z iip exp(—2vmpx/a).

p=—o0o0

2
% = —w? exp(uwt) Z iip exp(—2(k + pb)x)
P
2
% = — exp(wwt) Z(k + pb)? iip exp(—u(k + pb)x).
P

2 2
C. C.
(2 (k + pb)® — w?)iip + i(k +(p+1)b)20pss — ?‘Z(k +(p— 1)b)%ip_1 = 0.

. . 0
2 2 .
— 3L (k —2b)? cg(kz— b)? — w? L k2 , 0 i1
0 -3 (k- b)? cgk22— w? L(k+b)? go =0
0 —A2 Z(k+b)? - w? !
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Bloch theorem

One-dimensional sinusoidal grating Ill
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Around the crossing w = cob/2 and k = b/2:
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Dispersion relation: | (c2(k — b)* — w?)(c2k* — w®) — lez(k —b? =0
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