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Concepts and equations

Examples of sonic crystals

Figure: Some sonic crystals. (a) Square lattice crystal of acrylic rods in air [3]. (b) Sculpture by
Eusebio Sempere (Fundación Juan March, Madrid) [4]. (c) Phononic crystal of steel rods in water [5].
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Basic equations for pressure waves

Newton's �rst law:

ρ
∂2u

∂t2
= −∇p or ρ

∂2ui
∂t2

= −p,i .

For a linear and compressible �uid, we have the constitutive relation p = −BS (S = ∇.u is the
strain).

The material constants are discontinuous.

Wave equations:

∇·
(
1

ρ
∇p
)

=
∂2

∂t2

( p
B

)
∇ (B∇· u) = ρ

∂2u

∂t2
.

Celerity c =
√
B/ρ; impedance Z = ρc
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Materials constants

Table: Material constants for acoustic waves in �uids, at room temperature (T = 293 K). Isotropic
solids are considered as e�ective �uids, i.e., values for longitudinal waves are given (B = c11).

Density ρ Bulk modulus B Sound velocity c Impedance Z

kg/m3 GPa m/s N.s/m3

Air 1.2041 1.42 10−4 343.4 413.5
Water 1000 2.2 1483 1.483 106

Propanol 786 1.076 1170 1.16 106

Mercury 13500 28.38 1450 19.6 106

Nylon 1150 6.6 2400 2.76 106

Plexiglas 1190 9.0 2750 3.27 106

Steel 7780 264 5825 45.3 106

PVC 1560 7.8 2236 3.49 106
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A simple loss model

Phenomenologically, modify the constitutive relation:

p = −B
(
S + τ

∂S

∂t

)
,

where τ is some time constant. The propagation equation becomes

ρ
∂2u

∂t2
= ∇

(
B∇· u + τ

∂∇· u
∂t

)
.

This is no more a wave equation. Anyway, for monochromatic waves we obtain the complex dispersion
relation

ω2 = c
2(1 + ıωτ)k2.

In practice, B −→ B(1 + ıωτ) becomes complex and dispersive.
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Finite element modeling

Ω2

Ω1

σ1

σ2

σi

(a) (b)

Figure: A computation domain and its mesh. (a) The domain Ω is the union of sub-domains Ω1 and
Ω2. The outer boundary is σ = σ1

⋃
σ2. σi is an internal boundary. (b) The inner parts of the

sub-domains are meshed with triangles. Inside each element, u(x) is approximated by
ue(x) =

∑
j N

e
j (x)ue

j where the Ne
j (x) are basis functions.
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Weak form of the pressure equation, boundary conditions

Consider all possible test functions q(t, x) belonging to the same �nite element space as the
pressure and form the scalar products

−
∫

Ω

dx q∇·
(
1

ρ
∇p
)

+

∫
Ω

dx q
1

B

∂2p

∂t2
=

∫
Ω

dx qf .

Using the divergence theorem, the weak form is∫
Ω

dx ∇q ·
(
1

ρ
∇p
)
−
∫
σ

ds q

(
1

ρ
∇p
)
· n +

∫
Ω

dx q
1

B

∂2p

∂t2
=

∫
Ω

dx qf .

External boundary conditions � free:
(
1

ρ
∇p
)
· n = 0; Dirichlet: p = p0

Continuity between elements of p and
(
1

ρ
∇p
)
· n (normal acceleration)
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Example of an internal source and radiation BC

(a)
Water

σi

σ (b)

Figure: Internal source and radiation boundary condition. (a) The computational domain is a disk of
water inside which a linear source is added by prescribing p = 1 Pa along internal boundary σi . A

radiation boundary condition
(
1

ρ
∇p
)
· n = −ıωp

ρc
is applied at boundary σ. (b) The solution shows the

natural di�raction of the acoustic beam radiated from the source. The source dimension is slightly less
than 3 wavelengths in water.
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FEM for a unit-cell: the band structure of sonic crystals

Look for Bloch waves in the form p(r) = exp(−ık · r)p̃(r), and consider p̃(r) as the
unknown �eld

In order to obtain the band structure, it is enough to solve the eigenproblem

ω2
∫

Ω

dr

(
q̃∗

1

B
p̃

)
=

∫
Ω

dr

(
(∇q̃ − ıkq̃)†

1

ρ
(∇p̃ − ıkp̃)

)
,∀q̃

There is no source term and the boundary integral vanishes identically because of the
periodic boundary conditions.

The wave vector k enters directly the variational formulation, and more precisely the
sti�ness matrix.
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FEM for a unit-cell: the mesh

Figure: Some examples of FEM meshes for various unit cells.
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2D sonic crystals

Rigid cylinders in air (SQ, d/a = 0.85)

Figure: A 2D sonic crystal of acrylic cylinders in air. a = 24 mm and r = 10.2 mm. The �lling
fraction is 0.567. [3]
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2D sonic crystals

Rigid cylinders in air (SQ, d/a = 0.85)
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2D sonic crystals

Rigid cylinders in air (HEX, d/a = 0.63)
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2D sonic crystals

Rigid cylinders in air (HC, d/a = 0.3636)
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2D sonic crystals

Steel rods in water (SQ, d/a = 0.82)
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Figure: A square-lattice sonic crystal of steel rods in water. a = 3 mm and d = 2.5 mm (�lling
fraction 0.54) [6]
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2D sonic crystals

Steel rods in water (HEX)

Figure: A hexagonal-lattice sonic crystal of steel rods in water. a = 1.5 mm and d = 1.2 mm (�lling
fraction 0.58) [7]
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2D sonic crystals

Steel rods in water (HC)

Figure: A honeycomb-lattice sonic crystal of steel rods in water. a = 1.5 mm and d = 1.2 mm (�lling
fraction 0.387) [7]
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3D sonic crystals

FEM meshes for 3D sonic crystals
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Figure: 3D meshes for simple cubic (SC,
left) and face centered cubic (FCC, right)
lattice sonic crystals.
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3D sonic crystals

Air bubbles in water I
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Figure: Band structure of simple cubic lattice sonic crystal of air bubbles in water. d/a = 0.576.
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3D sonic crystals

Air bubbles in water II
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Figure: Band structure of fcc lattice sonic crystal of air bubbles in water. d/a = 0.3628.
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3D sonic crystals

Tungsten carbide beads in water
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Figure: Band structure of face
centered cubic lattice sonic
crystal of tungsten carbide
beads in water. d/a = 0.707
(close-packed).




