Bulk waves in sonic crystals

Guided waves in phononic crystals

Bulk waves in sonic crystals

Concepts and equations

Examples of sonic crystals

Figure: Some sonic crystals. (a) Square lattice crystal of acrylic rods in air [3]. (b) Sculpture by Eusebio Sempere (Fundación Juan March, Madrid) [4]. (c) Phononic crystal of steel rods in water [5].

・ロト・西ト・ヨト・ヨー もんぐ

Guided waves in phononic crystals

Concepts and equations

Basic equations for pressure waves

Newton's first law:

$$\rho \frac{\partial^2 \boldsymbol{u}}{\partial t^2} = -\nabla p \quad \text{or} \quad \rho \frac{\partial^2 u_i}{\partial t^2} = -p_{,i}.$$

- For a linear and compressible fluid, we have the constitutive relation p = -BS ($S = \nabla . u$ is the strain).
- The material constants are discontinuous.

Wave equations:

$$\nabla \cdot \left(\frac{1}{\rho} \nabla \rho\right) = \frac{\partial^2}{\partial t^2} \left(\frac{p}{B}\right)$$
$$\nabla \left(B \nabla \cdot \boldsymbol{u}\right) = \rho \frac{\partial^2 \boldsymbol{u}}{\partial t^2}.$$

• Celerity
$$c=\sqrt{B/
ho}$$
; impedance $Z=
ho c$

Materials constants

Table: Material constants for acoustic waves in fluids, at room temperature (T = 293 K). Isotropic solids are considered as effective fluids, i.e., values for longitudinal waves are given ($B = c_{11}$).

	$\frac{Density}{\mathrm{kg/m}^3}\rho$	Bulk modulus <i>B</i> GPa	Sound velocity <i>c</i> m/s	Impedance Z N s/m ³
Air	1.2041	1.42 10 ⁻⁴	343.4	413.5
Water	1000	2.2	1483	1.483 10 ⁶
Propanol	786	1.076	1170	1.16 10 ⁶
Mercury	13500	28.38	1450	19.6 10 ⁶
Nylon	1150	6.6	2400	2.76 10 ⁶
Plexiglas	1190	9.0	2750	3.27 10 ⁶
Steel	7780	264	5825	45.3 10 ⁶
PVC	1560	7.8	2236	3.49 10 ⁶

A simple loss model

Phenomenologically, modify the constitutive relation:

$$p = -B\left(S + au rac{\partial S}{\partial t}
ight),$$

where au is some time constant. The propagation equation becomes

$$\rho \frac{\partial^2 \boldsymbol{u}}{\partial t^2} = \nabla \left(\boldsymbol{B} \nabla \cdot \boldsymbol{u} + \tau \frac{\partial \nabla \cdot \boldsymbol{u}}{\partial t} \right).$$

This is no more a wave equation. Anyway, for monochromatic waves we obtain the complex dispersion relation

$$\omega^2 = c^2 (1 + \imath \omega \tau) k^2.$$

In practice, $egin{array}{c} B \longrightarrow B(1+\imath\omega au) \end{array}$ becomes complex and dispersive.

Guided waves in phononic crystals Bulk waves in sonic crystals

Concepts and equations

Finite element modeling

Figure: A computation domain and its mesh. (a) The domain Ω is the union of sub-domains Ω_1 and Ω_2 . The outer boundary is $\sigma = \sigma_1 \bigcup \sigma_2$. σ_i is an internal boundary. (b) The inner parts of the sub-domains are meshed with triangles. Inside each element, u(x) is approximated by $u^e(x) = \sum_i N_i^e(x) u_i^e$ where the $N_j^e(x)$ are basis functions.

Guided waves in phononic crystals Bulk waves in sonic crystals

Weak form of the pressure equation, boundary conditions

• Consider all possible test functions q(t, x) belonging to the same finite element space as the pressure and form the scalar products

$$-\int_{\Omega} \mathrm{d}\mathbf{x} \, q \nabla \cdot \left(\frac{1}{\rho} \nabla \rho\right) + \int_{\Omega} \mathrm{d}\mathbf{x} \, q \frac{1}{B} \frac{\partial^2 \rho}{\partial t^2} = \int_{\Omega} \mathrm{d}\mathbf{x} \, q f.$$

Using the divergence theorem, the weak form is

$$\int_{\Omega} \mathrm{d}\boldsymbol{x} \, \nabla q \cdot \left(\frac{1}{\rho} \nabla p\right) - \int_{\sigma} \mathrm{d}\boldsymbol{s} \, q \left(\frac{1}{\rho} \nabla p\right) \cdot \boldsymbol{n} + \int_{\Omega} \mathrm{d}\boldsymbol{x} \, q \frac{1}{B} \frac{\partial^2 p}{\partial t^2} = \int_{\Omega} \mathrm{d}\boldsymbol{x} \, q f.$$

• External boundary conditions – free: $\left(\frac{1}{\rho}\nabla p\right)\cdot \boldsymbol{n} = 0$; Dirichlet: $p = p_0$

Continuity between elements of p and $\left(\frac{1}{\rho}\nabla p\right) \cdot \boldsymbol{n}$ (normal acceleration)

Guided waves in phononic crystals Bulk waves in sonic crystals

Concepts and equations

Example of an internal source and radiation BC

Figure: Internal source and radiation boundary condition. (a) The computational domain is a disk of water inside which a linear source is added by prescribing p = 1 Pa along internal boundary σ_i . A radiation boundary condition $\left(\frac{1}{\rho}\nabla p\right) \cdot \mathbf{n} = -i\frac{\omega p}{\rho c}$ is applied at boundary σ . (b) The solution shows the natural diffraction of the acoustic beam radiated from the source. The source dimension is slightly less than 3 wavelengths in water.

FEM for a unit-cell: the band structure of sonic crystals

- Look for Bloch waves in the form $p(\mathbf{r}) = \exp(-i\mathbf{k} \cdot \mathbf{r})\tilde{p}(\mathbf{r})$, and consider $\tilde{p}(\mathbf{r})$ as the unknown field
- In order to obtain the band structure, it is enough to solve the eigenproblem

$$\omega^2 \int_{\Omega} d\mathbf{r} \left(\tilde{q}^* \frac{1}{B} \tilde{p}
ight) = \int_{\Omega} d\mathbf{r} \left((\nabla \tilde{q} - \imath \mathbf{k} \tilde{q})^{\dagger} \frac{1}{\rho} (\nabla \tilde{p} - \imath \mathbf{k} \tilde{p})
ight), \forall \tilde{q}$$

- There is no source term and the boundary integral vanishes identically because of the periodic boundary conditions.
- The wave vector \boldsymbol{k} enters directly the variational formulation, and more precisely the stiffness matrix.

Guided waves in phononic crystals

Bulk waves in sonic crystals

Concepts and equations

FEM for a unit-cell: the mesh

Figure: Some examples of FEM meshes for various unit cells.

Rigid cylinders in air (SQ, d/a = 0.85)

Figure: A 2D sonic crystal of acrylic cylinders in air. a = 24 mm and r = 10.2 mm. The filling fraction is 0.567. [3]

Rigid cylinders in air (SQ, d/a = 0.85)

Rigid cylinders in air (HEX, d/a = 0.63)

Rigid cylinders in air (HC, d/a = 0.3636)

・ロト・西ト・モート 一日・ 今日・

Guided waves in phononic crystals Bulk waves in sonic crystals

2D sonic crystals

Steel rods in water (SQ, d/a = 0.82)

Figure: A square-lattice sonic crystal of steel rods in water. a = 3 mm and d = 2.5 mm (filling fraction 0.54) [6]

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Steel rods in water (HEX)

Figure: A hexagonal-lattice sonic crystal of steel rods in water. a = 1.5 mm and d = 1.2 mm (filling fraction 0.58) [7]

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Steel rods in water (HC)

Figure: A honeycomb-lattice sonic crystal of steel rods in water. a = 1.5 mm and d = 1.2 mm (filling fraction 0.387) [7]

FEM meshes for 3D sonic crystals

Figure: 3D meshes for simple cubic (SC, left) and face centered cubic (FCC, right) lattice sonic crystals.

Guided waves in phononic crystals Bulk waves in sonic crystals 3D sonic crystals

Air bubbles in water I

Figure: Band structure of simple cubic lattice sonic crystal of air bubbles in water. d/a = 0.576

Air bubbles in water II

Figure: Band structure of fcc lattice sonic crystal of air bubbles in water. d/a = 0.3628

Tungsten carbide beads in water

Figure: Band structure of face centered cubic lattice sonic crystal of tungsten carbide beads in water. d/a = 0.707(close-packed).

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - 釣�?