Bulk waves in phononic crystals

・ロト・(型ト・(型ト・(型ト)) 至 の(で)

Guided waves in phononic crystals Bulk waves in phononic crystals Concepts and equations

Examples of phononic crystals

Figure: Examples of phononic crystals. (a) 3D phononic crystal of steel spheres in an epoxy matrix arranged according to a FCC lattice [8]. (b) 2D phononic crystal of holes in aluminum [9].

Guided waves in phononic crystals └─ Bulk waves in phononic crystals └─ Concepts and equations

Elastodynamic equations

Dynamic equation

$$T_{ij,j} + f_i = \rho \frac{\partial^2 u_i}{\partial t^2}$$

- **u** is the displacement vector, T_{ij} is the stress tensor
- *f_i* are body forces (often, sources)
- Constitutive equation of elasticity (Hooke's law)

$$T_{ij} = c_{ijkl} S_{kl}$$

with c_{ijkl} the elastic tensor and $S_{ij} = \frac{1}{2} (u_{i,j} + u_{j,i})$ the strain tensor.

- Contracted notation: I = (ij) for any pair of symmetric indices. $I = 1 \cdots 6$. $T_I = c_{IJ}S_J$.
- In phononic crystals, the material tensors are discontinuous functions of position.

Guided waves in phononic crystals

- - -

└─ Concepts and equations

Independent elements of the elastic tensor c_{IJ}

└─ Concepts and equations

Elastic constants for selected solids

Material	Point group		$ ho \ (10^3 \ { m kg/m}^3)$					
lso. SiO ₂	-	c ₁₁ 7.85	644 3.12					2.203
AsGa Si	43 m m3 m	211 11.88 16.56	c12 5.38 6.39	2.83 7.95				5.307 2.329
Hexa. PZT-4 Z=0	-	c ₁₁ 13.9	<i>c</i> 12 7.8	C ₁₃ 7.4	c ₃₃ 11.5	C44 2.6		7.5
ZnO Tetra. TiO₂	o <i>mm</i> 4/mmm	21.0 ^C 11 26.6	^{12.1} ^c 12 17.3	^C 13 13.6	21.1 C 33 47.0	4.2 C44 12.4	c 66 18.9	4.28
Trigonal Al₂O₃ LiNbO₃ quartz-α	3m 3m 32	c ₁₁ 49.7 20.3 8.7	c ₁₂ 16.3 5.3 0.7	c ₁₃ 11 1 7 5 1 2	с _{зз 49.8 24.5 10.7}	c44 14.7 6.0 5.8	<i>c</i> 14 -2.3 0.9 -1.8	3.986 4.7 2.648

Guided waves in phononic crystals Bulk waves in phononic crystals Concepts and equations

Attenuation

When loss must be taken into account, a practical model is viscoelasticity: the elastic tensor becomes complex-valued and dispersive

$$c_{IJ} \longrightarrow c_{IJ} + \imath \omega \eta_{IJ}$$

Table: Phonon viscosity	tensor η_{IJ}	for some	materials and	crystals.
-------------------------	--------------------	----------	---------------	-----------

Material	Point group	Phonon viscosity constants $(10^{-3} \text{ N/m}^2.\text{s})$					
lso. SiO₂ [10] Cubic	-	η_{11} 5.9 η_{11}	$\eta_{44} pprox 0.6$	Паа			
AsGa [11] Si [11]	43 m m3 m	7.49 5.9	6.57 5.16	0.72 0.62			
Trigonal LiNbO3 [12] quartz-α [10]	3 <i>m</i> 32	η ₁₁ 0.6547 1.37	η ₁₂ 0.2275 0.73	η ₁₃ 0.2499 0.71	η 33 0.3377 0.96	η_{44} 0 1765 0 36	η 14 -0.0687 0.01

Guided waves in phononic crystals Bulk waves in phononic crystals Concepts and equations

Weak form of the elastodynamic equation, boundary conditions

 Consider test functions v that are defined on the same finite element space as the displacement vector u. Projection on the test functions results in

$$-\int_{\Omega} d\mathbf{r} \, \mathbf{v}^* \cdot (\nabla \cdot T) + \int_{\Omega} d\mathbf{r} \, \mathbf{v}^* \cdot \rho \frac{\partial^2 \mathbf{u}}{\partial t^2} = \int_{\Omega} d\mathbf{r} \, \mathbf{v}^* \cdot \mathbf{f}$$

Apply the divergence theorem and insert Hooke's law to get

$$\int_{\Omega} d\mathbf{r} \; S(\mathbf{v})_{I}^{*} c_{IJ} S(\mathbf{u})_{J} - \int_{\sigma} d\mathbf{s} \; \mathbf{v}^{*} \cdot T_{n} + \int_{\Omega} d\mathbf{r} \; \mathbf{v}^{*} \cdot \rho \frac{\partial^{2} \mathbf{u}}{\partial t^{2}} = \int_{\Omega} d\mathbf{r} \; \mathbf{v}^{*} \cdot \mathbf{f}$$

 $T_n = T_{ij}n_j$ is the normal traction.

- External boundary conditions free: $T_n = 0$; Dirichlet: $u_i = u_{0i}$
- Continuity between elements of displacements and normal tractions.

Guided waves in phononic crystals Bulk waves in phononic crystals Concepts and equations

FEM for a unit-cell: the band structure of phononic crystals

Apply periodic boundary conditions and consider Bloch waves as $u_i(t, \mathbf{x}) = \tilde{u}_i(\mathbf{x}) \exp(i(\omega t - \mathbf{k} \cdot \mathbf{x}))$

$$\int_{\Omega} d\mathbf{r} \; S(\mathbf{v})_I^* c_{IJ} S(\mathbf{u})_J = \omega^2 \int_{\Omega} d\mathbf{r} \; \mathbf{v}^* \cdot
ho \mathbf{u}$$

where the strains should be understood as

$$S_{1}(\mathbf{u}) = \frac{\partial \tilde{u}_{1}}{\partial x_{1}} - \imath k_{1} \tilde{u}_{1},$$

$$S_{2}(\mathbf{u}) = \frac{\partial \tilde{u}_{2}}{\partial x_{2}} - \imath k_{2} \tilde{u}_{2},$$

$$S_{3}(\mathbf{u}) = \frac{\partial \tilde{u}_{3}}{\partial x_{3}} - \imath k_{3} \tilde{u}_{3},$$

$$S_{4}(\mathbf{u}) = \frac{\partial \tilde{u}_{3}}{\partial x_{2}} + \frac{\partial \tilde{u}_{2}}{\partial x_{3}} - \imath (k_{3} \tilde{u}_{2} + k_{2} \tilde{u}_{3}),$$

$$S_{5}(\mathbf{u}) = \frac{\partial \tilde{u}_{3}}{\partial x_{1}} + \frac{\partial \tilde{u}_{1}}{\partial x_{3}} - \imath (k_{3} \tilde{u}_{1} + k_{1} \tilde{u}_{3}),$$

$$S_{6}(\mathbf{u}) = \frac{\partial \tilde{u}_{2}}{\partial x_{1}} + \frac{\partial \tilde{u}_{1}}{\partial x_{2}} - \imath (k_{2} \tilde{u}_{1} + k_{1} \tilde{u}_{2}).$$

2D HEX phononic crystal of steel rods in epoxy I

Figure: The filling fraction is F = 0.4 or d/a = 0.6641 [13].

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへ⊙

Guided waves in phononic crystals Bulk waves in phononic crystals

2D HEX phononic crystal of steel rods in epoxy II

Figure: Experimental transmission. The filling fraction is F = 0.4 or d/a = 0.6641. The measured transmission for longitudinal waves is shown for (a) the ΓK and (b) the ΓM directions (c-d) computed transmission [13]

2D HEX-lattice phononic crystal of cylindrical holes in steel

Figure: The filling fraction is F = 0.4 or $d/a = 0.6641_{\Box}$, e^{-1} ,

2D SQ-lattice phononic crystal of cylindrical holes in steel

Figure: The filling fraction is F = 0.54 or d/a = 0.83.

2D HC-lattice phononic crystal of cylindrical holes in steel

Figure: The filling fraction is F = 0.39 or d/a = 0.462, A = 0.4

Guided waves in phononic crystals Bulk waves in phononic crystals

2D SQ-lattice phononic crystal of cylindrical holes in silicon

Figure: The filling fraction is F = 0.54 or d/a = 0.83. small dots: natural crystallographic orientation; large dots: 45° -rotation or [110] direction.

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Guided waves in phononic crystals Bulk waves in phononic crystals

2D SQ-lattice phononic crystal of cylindrical holes in TiO_2

Figure: The filling fraction is F = 0.54 or d/a = 0.83. small dots: natural crystallographic orientation; large dots: 45° -rotation or [110] direction.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ 三重 めんの

3D FCC-lattice phononic crystal of steel spheres in polymer

Figure: The filling fraction is F = 0.184 (d/a = 0.445) [14].

3D FCC-lattice phononic crystal of steel spheres in epoxy

Figure: The filling fraction is F = 0.74(d/a = 0.707) [8].

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○○○○

Guided waves in phononic crystals Bulk waves in phononic crystals

Steel spheres in epoxy, <u>3D close-packed FCC</u>

Figure: Experimental transmission power spectra along (a) the [Ī10], (b) the [100], and (c) the [111] directions of a 4-period PC [8].

◆□▶ ◆□▶ ◆三▶ ◆三▶ → 三 - のへで

Piezoelastic equations

Mechanical quantities are coupled with (quasi-static) electrical quantities. The most efficient formulation is the extended piezoelastic model:

$$T_{ij,j}^{e} = \rho_{ik}^{e} \frac{\partial^2 u_k^{e}}{\partial t^2},$$
$$T_{ij}^{e} = c_{ijkl}^{e} u_{k,l}^{e}.$$

with

$$\bar{c}_{ijkl} = \begin{cases} c_{ijkl} & i, l = 1, 2, 3 \\ e_{kij} & l = 4, i = 1, 2, 3 \\ e_{jkl} & i = 4, l = 1, 2, 3 \\ -\epsilon_{jk} & i, l = 4 \end{cases} \qquad \rho_{il} = \rho \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

and the generalized displacements, \bar{u}_i , and stresses, $\bar{\mathcal{T}}_{ij}$, defined as

$$\begin{array}{rcl} \bar{u}_i &=& u_i, i=1,2,3, \\ \bar{u}_4 &=& \Phi, \\ \bar{T}_{ij} &=& T_{ij}, i=1,2,3, \\ \bar{T}_{4j} &=& D_j, \end{array}$$

Tensors of the piezoelectric constitutive relation

C11	C12		C16	e11	e_{21}	e_{31}
	C22			e12		
				· ·		
				· ·		
			 C66	e16		e36
e_{11}	e_{12}		 e 16	ε 11	ε_{12}	ε_{13}
e_{21}				· ·	ε_{22}	ε_{23}
e_{31}			e_{36}	.		ε_{33}

Material		Elas	Diel (10	Diel. constants (10 ⁻¹¹ F/m)				
Cubic AsGa	e ₁₄ -0.16						ε_{11} 9.73	
Hexa. PZT-4 ZnO	е ₁₃ 12.7 0.50	e ₃₁ -5.2	e 33 15.1				ε ₁₁ 650 7 29	ະ 33 560 7 92
Trigonal LiNbO ₃ quartz-α	^e 11 0 0.717	-0.01 <i>e</i> 14 0 -0.0406	e ₁₃ 3.7 0	e ₂₂ 2.5 0	e ₃₁ 0.2 0	езз 1.3 0	ε ₁₁ 38.9 3.92	ε ₃₃ 25.7 4.10

FEM for piezoelasticity

Consider a mixed finite element space for (\boldsymbol{u}, Φ) . The test functions are defined in the same space and are denoted (\boldsymbol{v}, Ψ) . The variational formulation is based on the equation

$$-\int_{\Omega} \mathbf{v}^* \cdot \nabla T + \int_{\Omega} \mathbf{v}^* \cdot \rho \frac{\partial^2 \mathbf{u}}{\partial t^2} - \int_{\Omega} \Psi^* \nabla \cdot \boldsymbol{D} = \int_{\Omega} \mathbf{v}^* \cdot \mathbf{f}.$$

After application of the divergence theorem

$$\int_{\Omega} S(\mathbf{v})_{l}^{*} T_{l} - \int_{\sigma} \mathbf{v}^{*} \cdot T_{n} + \int_{\Omega} \mathbf{v}^{*} \cdot \rho \frac{\partial^{2} \mathbf{u}}{\partial t^{2}} + \int_{\Omega} \nabla \Psi^{*} \cdot \mathbf{D} - \int_{\sigma} \Psi D_{n}$$
$$= \int_{\Omega} \mathbf{v}^{*} \cdot \mathbf{f}.$$

Boundary conditions are both mechanical and electrical – no surface charge: D_n ; fixed potential: $\Phi = V$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

2D SQ-lattice phononic crystal of holes in (ZX) LiNbO₃

Figure: The filling fraction is F = 0.54 or d/a = 0.83. Left/right: with/without piezoelectricity taken into account.

Reduced wavenumber, $ka/2\pi$ Reduced wavenumber, $ka/2\pi$

2D SQ-lattice phononic crystal of holes in (YX) LiNbO₃

Figure: The filling fraction is F = 0.54 or d/a = 0.83. Left/right: with/without piezoelectricity taken into account.

Reduced wavenumber, $ka/2\pi$ Reduced wavenumber, $ka/2\pi$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

2D SQ-lattice phononic crystal of holes in (XY) LiNbO₃

Figure: The filling fraction is F = 0.54 or d/a = 0.83. Left/right: with/without piezoelectricity taken into account.

Reduced wavenumber, $ka/2\pi$ Reduced wavenumber, $ka/2\pi$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●