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Introduction

Examples of phononic crystals for surface and plate waves

Figure: (al) Marble [15].
(a2) Si [16]. (a3) LiNbO3
[17]. (b1) Si [18]. (b2) AIN
[19]. (b3) W in Si [20].
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Phononic crystals slab

FEM for phononic crystal slab

(a) (b) (c)

Figure: Some possible phononic crystal slab unit cells, here shown for a square lattice. Possible
inclusions are (a) holes, (b) filled solid holes, or (c) pillars.

Obtaining the band structure for phononic crystal slabs is similar to the case of 2D phononic
crystals: apply periodic boundary conditions on the lateral sides and solve in 3D.
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Phononic crystals slab

FEM meshes for phononic crystal slab

(al) (b1)

Figure: (1) SQ, (2) HEX,
(c2) and (3) HC. (a) hollow
inclusion, (b) solid
inclusion, and (c) pillar
sitting on a membrane.

(a2)

(a3)
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Phononic crystals slab

Phononic crystal slab of holes in silicon, HC |
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Figure: h/a=0.6 and d/a = 0.5.



Guided waves in phononic crystals

L Surface and plate waves in phononic crystals

Phononic crystals slab

Phononic crystal slab of holes in silicon,
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Figure: Geometrical parameters are a =26 pm, d = 12.8 um, and h = 15 pum. Transmission is

obtained with a pair of interdigital transducers and normalized to the value without the phononic
crystal [18].
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Phononic crystals slab

Phononic crystal slab of holes in AIN/SiO,, SQ
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Phononic crystals slab

Solid-solid phononic crystal slab of steel beads in epoxy, SQ
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Phononic crystals slab

Phononic crystal slab of quartz in epoxy, SQ
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Figure: Gap map for the square-lattice phononic crystal slab composed of quartz inclusions in an
epoxy matrix. Filling fraction F = 0.5. fa = wa/(27) [23]
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Phononic crystals slab

Phononic crystal slab of tungsten in silica, SQ |
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Figure: h/a=1 and d/a = 0.48.
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Phononic crystals slab

Phononic crystal slab of tungsten in silica, SQ Il
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Figure: Transmission measurements of a phononic crystal slab composed of tungsten (W) rods in a
silicon dioxide (SiO;) matrix. 2 =2.5 ym, d = 1.4 pm, and h = 1.85 pm [24].
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Phononic crystals slab

Comparison of holey and solid-solid PC slabs
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Figure: Phononic band gap versus inclusion radius for a range of slab thicknesses for a phononic crystal
formed in a silicon matrix with a square lattice array of cylindrical air holes (right panel) and tungsten
rods (left). The full 2D band gaps are shown by the dotted curve [25].
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Semi-infinite surface phononic crystals

Semi-infinite surface phononic crystals |

Figure: Schematic geometry of
elastic wave propagation on the
surface of a 2D phononic
crystal.

m Surface Bloch waves are 2D-periodic and satisfy surface boundary conditions (e.g., T» =0) —
use a 2D mesh in the plane (x1, x2)

m Bloch's theorem must be expressed for both displacements and stresses
ui(t, x) = ;i(x) exp(e(wt — k - x)),
Ti(t,x) = 7',-,-(x) exp(y(wt — k- x))



Guided waves in phononic crystals
L Surface and plate waves in phononic crystals

Semi-infinite surface phononic crystals

Semi-infinite surface phononic crystals Il

m The natural variables are displacements and normal stresses:

/ uf* (W picui + Tij j) +/ i3 (Tis — Giskuk,) = 0.
Q Q

leading to [2]:

2
2 ~ bk ~
w Ui PikUx —
Q

J=1

2

~ Tk ~ tx Ttk ~

=1k3 E /U;,jCyk3Uk+U; Ti3_/ Tis Ciskalik
=Je Q

2

o~k ~ T L ~ T-tx T

/”i,icijkluk,l - E /Ti3 Ci3k/Uk,l+/ Tis T;
Q =179 Q

m Generalized eigenvalue problem:

WwR—-B 0 B Gy L o
{ -G /d]h_”@{—D O}h vh=(0;, Tis),i=1...r.
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Semi-infinite surface phononic crystals

Semi-infinite surface phononic crystals Il

m Once the Q eigenvalues and eigenvectors are found, form expansion in partial waves:

Q
h(x, t) = ZAqhq(x) exp(g(wt — kg -x)),
q=1
m Keep only partial waves that are inside the substrate (selection rule):

P3q <0 if g(k3q) = 0,

Select partial wave q if )
S(kaq) > 0 otherwise

with the Poynting vector

1 T ~ %
P3q = T(Q) /Q ?}%(ZW _,_,'3ql.l,'q)

m Finally, compute the surface boundary condition determinant A(w, ki, k2) = | Tizq| = 0.



Guided waves in phononic crystals
L Surface and plate waves in phononic crystals

Semi-infinite surface phononic crystals

Surface boundary condition determinants
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Semi-infinite surface phononic crystals

Semi-infinite surface phononic crystal: band structure
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Figure: Total density of surface states plotted along the irreducible Brillouin zone. The plot is along
the path -X-M-Y-I" around the irreducible Brillouin zone, for a Y-cut square lattice lithium niobate
surface phononic crystal with d/a = 0.9 [26].
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Finite-depth surface phononic crystals

Finite-depth surface phononic crystals: the crystal layer

Figure: The finite depth surface phononic crystal problem. 3D mesh with truncated substrate [27]

m In practice, one cannot etch infinitely deep holes
m — phononic crystal layer on a (semi-infinite) substrate
m Sound cone: radiation limit of bulk waves in the substrate
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Finite-depth surface phononic crystals

Phononic band structure for surface guided waves

Figure: Finite-depth HC

phononic crystals. Y-cut

lithium niobate. (a)-(c)
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Finite-depth surface phononic crystals

The first finite-depth surface phononic crystal
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Figure: Experimental transmission of a surface phononic crystal in silicon [16]
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Finite-depth surface phononic crystals

Optical probing by short pulse generation
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(c) Outline of experimental
setup with SAW image at
7 =10.3 ns [28]
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Finite-depth surface phononic crystals

The first complete-band-gap surface phononic crystal
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Figure: Full phononic band gap for a square-lattice Y-cut lithium niobate surface phononic crystal.
d/a=0.9, a=10 um [17]
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Finite-depth surface phononic crystals

Optical interferometric observation of SAW phononic crystal
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Figure: Heterodyne optical interferometer measurement. a = 2.2 um, d = 2 pun [29]





