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Introduction

Examples of phononic crystals for surface and plate waves

Figure: (a1) Marble [15].
(a2) Si [16]. (a3) LiNbO3

[17]. (b1) Si [18]. (b2) AlN
[19]. (b3) W in Si [20].
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Phononic crystals slab

FEM for phononic crystal slab

(a) (b) (c)

Figure: Some possible phononic crystal slab unit cells, here shown for a square lattice. Possible
inclusions are (a) holes, (b) �lled solid holes, or (c) pillars.

Obtaining the band structure for phononic crystal slabs is similar to the case of 2D phononic
crystals: apply periodic boundary conditions on the lateral sides and solve in 3D.
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Phononic crystals slab

FEM meshes for phononic crystal slab

(a1) (b1) (c1)

(a2) (b2) (c2)

(a3) (b3)

Figure: (1) SQ, (2) HEX,
and (3) HC. (a) hollow
inclusion, (b) solid
inclusion, and (c) pillar
sitting on a membrane.
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Phononic crystals slab

Phononic crystal slab of holes in silicon, HC I
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Figure: h/a = 0.6 and d/a = 0.5.
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Phononic crystals slab

Phononic crystal slab of holes in silicon, HC II

Figure: Geometrical parameters are a = 26 µm, d = 12.8 µm, and h = 15 µm. Transmission is
obtained with a pair of interdigital transducers and normalized to the value without the phononic
crystal [18].
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Phononic crystals slab

Phononic crystal slab of holes in AlN/SiO2, SQ

Figure: Optical measurements at (a)
804 MHz and (b) 1120 MHz. (c)
Fitted against an exponentially
decreasing law [21].
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Phononic crystals slab

Solid-solid phononic crystal slab of steel beads in epoxy, SQ

Figure: d = a = 4 mm [22].
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Phononic crystals slab

Phononic crystal slab of quartz in epoxy, SQ
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Figure: Gap map for the square-lattice phononic crystal slab composed of quartz inclusions in an
epoxy matrix. Filling fraction F = 0.5. fa = ωa/(2π) [23]
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Phononic crystals slab

Phononic crystal slab of tungsten in silica, SQ I
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Figure: h/a = 1 and d/a = 0.48.
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Phononic crystals slab

Phononic crystal slab of tungsten in silica, SQ II

Figure: Transmission measurements of a phononic crystal slab composed of tungsten (W) rods in a
silicon dioxide (SiO2) matrix. a = 2.5 µm, d = 1.4 µm, and h = 1.85 µm [24].
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Phononic crystals slab

Comparison of holey and solid-solid PC slabs

Figure: Phononic band gap versus inclusion radius for a range of slab thicknesses for a phononic crystal
formed in a silicon matrix with a square lattice array of cylindrical air holes (right panel) and tungsten
rods (left). The full 2D band gaps are shown by the dotted curve [25].
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Semi-in�nite surface phononic crystals

Semi-in�nite surface phononic crystals I
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Figure: Schematic geometry of
elastic wave propagation on the
surface of a 2D phononic
crystal.

Surface Bloch waves are 2D-periodic and satisfy surface boundary conditions (e.g., Tn = 0) −→
use a 2D mesh in the plane (x1, x2)

Bloch's theorem must be expressed for both displacements and stresses

ui (t, x) = ũi (x) exp(ı(ωt − k · x)),

Tij (t, x) = T̃ij (x) exp(ı(ωt − k · x))
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Semi-in�nite surface phononic crystals

Semi-in�nite surface phononic crystals II

The natural variables are displacements and normal stresses:∫
Ω

u
t∗
i (ω2ρikuk + Tij,j ) +

∫
Ω

T
t∗
i3 (Ti3 − ci3kluk,l ) = 0.

leading to [2]:

ω2

∫
Ω

ũ
t∗
i ρik ũk −

2∑
j,l=1

∫
Ω

ũ
t∗
i,jcijkl ũk,l −

2∑
l=1

∫
Ω

T̃
t∗
i3 ci3kl ũk,l +

∫
Ω

T̃
t∗
i3 T̃i3

= ık3

 2∑
j=1

∫
Ω

ũ
t∗
i,jcijk3ũk + u

t∗
i Ti3 −

∫
Ω

T̃
t∗
i3 ci3k3ũk

 .

Generalized eigenvalue problem:[
ω2 R − B 0
−C2 Id

]
h = ık3

[
C1 Id
−D 0

]
h ; h = (ũi , T̃i3), i = 1 . . . r .
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Semi-in�nite surface phononic crystals

Semi-in�nite surface phononic crystals III

Once the Q eigenvalues and eigenvectors are found, form expansion in partial waves:

h(x, t) =
Q∑

q=1

Aq h̃q(x) exp((ωt − kq · x)),

Keep only partial waves that are inside the substrate (selection rule):

Select partial wave q if

{
P3q < 0 if =(k3q) = 0,

=(k3q) > 0 otherwise

with the Poynting vector

P3q =
1

2S(Ω)

∫
Ω

<(ıωT̃i3q ũ
∗
iq)

Finally, compute the surface boundary condition determinant ∆(ω, k1, k2) = |Ti3q| = 0.
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Semi-in�nite surface phononic crystals

Surface boundary condition determinants

Figure: Free (a) and shorted
(b) boundary conditions
determinants for the X (solid
line) and the M (dotted line)
points of the �rst Brillouin
zone, for a Y-cut SQ lithium
niobate surface phononic
crystal with d/a = 0.9 [26].
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Semi-in�nite surface phononic crystals

Semi-in�nite surface phononic crystal: band structure

Figure: Total density of surface states plotted along the irreducible Brillouin zone. The plot is along
the path Γ-X-M-Y-Γ around the irreducible Brillouin zone, for a Y-cut square lattice lithium niobate
surface phononic crystal with d/a = 0.9 [26].
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Finite-depth surface phononic crystals

Finite-depth surface phononic crystals: the crystal layer

Figure: The �nite depth surface phononic crystal problem. 3D mesh with truncated substrate [27]

In practice, one cannot etch in�nitely deep holes

−→ phononic crystal layer on a (semi-in�nite) substrate

Sound cone: radiation limit of bulk waves in the substrate
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Finite-depth surface phononic crystals

Phononic band structure for surface guided waves

Figure: Finite-depth HC
phononic crystals. Y-cut
lithium niobate. (a)-(c)
h = 0.7a, d = 0.5a, and
(d)-(f) h = 0.9a, d = 0.5a
[27]
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Finite-depth surface phononic crystals

The �rst �nite-depth surface phononic crystal

Figure: Experimental transmission of a surface phononic crystal in silicon [16]
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Finite-depth surface phononic crystals

Optical probing by short pulse generation

Figure: Optical pump-probe
experiments with a silicon
surface phononic crystal. (a) Si
phononic crystal coated with a
40 nm gold layer. d = 12
µm and a = 15 µm. (b) SAW
image at delay time τ = 7.4 ns.
(c) Outline of experimental
setup with SAW image at
τ = 10.3 ns [28]
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Finite-depth surface phononic crystals

The �rst complete-band-gap surface phononic crystal

Figure: Full phononic band gap for a square-lattice Y-cut lithium niobate surface phononic crystal.
d/a = 0.9, a = 10 µm [17]
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Finite-depth surface phononic crystals

Optical interferometric observation of SAW phononic crystal

Figure: Heterodyne optical interferometer measurement. a = 2.2 µm, d = 2 µm [29]




