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Introduction

Why complex frequencies and wavenumbers?

Complex frequencies describe the decay (or attenuation) of vibrations in time.

They are most useful for localized resonances.
The quality factor of a resonance, Q, measures the number of oscillations a resonator can
support before the vibration energy has decreased by a factor e−2π ≈ 0.2%.
De�ne a complex frequency ω0 = ωr (1 + ı

2Q
), with ωr = 2π

T
.

Complex wavenumbers describe the decay in space of outgoing waves.

They are well suited for monochromatic waves in periodic media.
The complex band structure k(ω) can describe frequency-dependent material loss [30, 31].
It also describes evanescent Bloch waves in relation to periodicity, both in the direction of
propagation (Bragg band gaps, local resonances) and in the transverse direction (orders of
di�raction).
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Evanescent Bloch waves of sonic crystals

Write the pressure wave equations as

−1

ρ
∇p̄ + ıkα

1

ρ
p̄ = ıωv̄,

ω2 1

B
p̄ = ∇· (ıωv̄)− ıkα · (ıωv̄).

Normal acceleration (or acceleration along the propagation direction):

φ = ıωα · v̄,

Considering a vector of two test functions (φ′, p̄′) in the same �nite element space as (φ, p̄).
Generalized eigenvalue problem [2]:∫

Ω

dxA(φ′, p̄′;φ, p̄) = (ık)

∫
Ω

dxB(φ′, p̄′;φ, p̄),∀(φ′, p′),

A(φ′, p̄′;φ, p̄) = φ′∗φ+ φ′∗
1

ρ
(α ·∇p̄) + ω2

p̄
′∗ 1

B
p̄ − (∇p̄′)† 1

ρ
∇p̄,

B(φ′, p̄′;φ, p̄) = φ′∗
1

ρ
p̄ − (α ·∇p̄′)∗ 1

ρ
p̄ − p̄

′∗φ.
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Sonic crystal of steel rods in water, 2D SQ I

Figure: Complex band
structure. d/a = 0.8.
Small dots:
antisymmetric (deaf)
bands. Large dots:
symmetric (non deaf)
bands.



Guided waves in phononic crystals

Evanescent Bloch waves

Sonic crystals

Sonic crystal of steel rods in water, 2D SQ II

Figure: Complex band
structure. d/a = 0.8.
Small dots:
antisymmetric (deaf)
bands. Large dots:
symmetric (non deaf)
bands.
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Assuming monochromaticity and the Bloch-Floquet theorem, we can write for the periodic part of
the solution

T̄ij = cijkl (ūk,l − ıkαl ūk),

T̄ij,j − ıkαj T̄ij = −ρω2
ūi

Considering a vector of 2r test functions (u′i , τ
′
i ) living in the same �nite element space as (ui , τi ),

i = 1, · · · , r . Generalized eigenvalue problem [2]∫
Ω

drA(τ ′, u′; τ , u) = (ık)

∫
Ω

drB(τ ′, u′; τ , u), ∀(τ ′, u′)

with

A(τ ′, u′; τ , u) = (τ ′)∗i τi − cijklαj (τ
′)∗i ūk,l + ρω2(ū′)∗i ūi − cijkl (ū

′)∗i,j ūk,l ,

B(τ ′, u′; τ , u) = −cijklαjαl (τ
′)∗i ūk − cijkl (ū

′)∗i,jαl ūk + (ū′)∗i τi .
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Phononic crystal of holes in silicon, 2D SQ, ΓX direction I
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Figure: Complex band structure d/a = 0.85. Pure shear waves.
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Phononic crystal of holes in silicon, 2D SQ, ΓX direction II

Figure: Evolution of the polarization across the lower band gap for some pure shear Bloch waves.
Points A, B, and C are for the entrance, the middle, and the exit of the lower band gap, respectively.
Point D is for an evanescent Bloch wave at the same frequency as point B.
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Phononic crystal of holes in silicon, 2D SQ, ΓX direction III
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Figure: Complex band structure. d/a = 0.85. In-plane waves.
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Phononic crystal of holes in silicon, 2D SQ, ΓM direction I
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Figure: Complex band structure. d/a = 0.85. Pure shear waves.
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Phononic crystal of holes in silicon, 2D SQ, ΓM direction II
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Figure: Complex band structure. d/a = 0.85. In-plane waves.
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Phononic crystal of holes in silicon, 2D SQ, lossless
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Phononic crystal of holes in silicon, 2D SQ, lossy
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