Mirrors, waveguides, and cavities

Basic computational problems for perfectly periodic and defect-based phononic crystals

Structure	Dispersion (infinite structure)	Scattering problem (finite structure)
Crystal	Band structure, $\omega(k)$ Complex band structur $k(\omega)$	Transmission, reflec- e,tion, and diffraction of an incident plane wave
Waveguide	Guided modes, with super-cell	Waveguide transmis- sion
Cavity	Confined modes, with super-cell	Cavity transmission

Mirrors, waveguides, and cavities

Bragg mirrors and cavities

Transmission coefficient within a Bragg band gap

Bragg mirrors and cavities

Two-port SAW resonator using phononic crystal mirrors

Figure: SQ phononic crystal of holes deeply etched in silicon, $d = 6 \ \mu m$ and $a = 10 \ \mu m$. A thin-layer of ZnO is deposited under the interdigital transducers. (b) $D = \lambda$ and (c) $D = 1.25\lambda$ ($\lambda = 23.4 \ \mu m$) [40].

Bragg mirrors and cavities

Two-port Lamb wave resonator using phononic crystal mirrors

Figure: SQ phononic crystal of holes is etched in silicon, d = 17.8 μ m and $a = 20 \mu$ m. The thickness of the silicon membrane is $h = 12 \mu$ m. Destructive interference is obtained for $D = 1.43\lambda$. Constructive interference is obtained for $D = 1.18\lambda$ [41]

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Mirrors, waveguides, and cavities

Bragg mirrors and cavities

Fabry-Perot sonic crystal slab resonator

Figure: Amplitude transmission coefficient through (a) 3D and (b) 2D double phononic crystals. Theoretical predictions with and without absorption (solid and dashed lines, respectively) are compared with the experimental data (symbols) [42].

Mirrors, waveguides, and cavities

Bragg mirrors and cavities

Fabry-Perot silicon phononic crystal slab resonator

Figure: PC slab resonator structure in silicon [43].

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ ○ ○ ○ ○

└─ Mirrors, waveguides, and cavities

Bragg mirrors and cavities

Defect cavities in a SQ sonic crystal of steel rods in water

Figure: Full band gap extending from 260 to 312 kHz. d = 2.5 mm and a = 3mm. [6]

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ◆□ ▶

Waveguides

Linear sonic crystal defect waveguide

Figure: (a) W1 (b) W2. SQ array of steel rods in water, a = 3 mm and d = 2.5 mm [44].

Bent defect waveguide in a sonic crystal of steel rods in water

Figure: SQ array of steel rods in water, a = 3 mm and d = 2.5 mm. Pressure distribution is shown at a frequency of 275 kHz [44].

Guided waves in phononic crystals — Mirrors, waveguides, and cavities

Waveguides

Phononic crystal waveguide for SAW in holey silicon

Figure: Time-domain optical pump-probe measurements [45]