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a and b vary in space effective parameters a.; (tensor) and b, (scalar)
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3) Examples (local resonance or not)

( Asymptotic analysis : n = kh — 0 )

We can expect resonances of the resulting medium:

(

e if resonances take place in the resulting structure

-
- -
. -~

Seaa
-

— Faraday cage, FP interferometer - - -

--------
...........

— Course of Kim Pham

e if a single inclusion supports resonances

subwavelength resonance: Mie, Helmholtz, Minnaert - - -

Appropriate scalings are needed to encapsulate the resonance

for instance Mie

kh =n < 1but kogh = O(1) = ¢y/c = O(n)

— Course of Claude Boutin
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_ classical homogenization: effective wave equation
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Higher order homogenization, including transmission conditions
Acoustic case
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Forest of trees with a gradient of heights

homogenized solution

Comsol multiphysics (S. Guenneau)
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