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Background: Steady state analysis of chiral periodic
structures

0 Brun M., Jones I.S. and Movchan A.B. (2012), Vortex-type elastic structured media and
dynamic shielding, Proceedings of the Royal Society of London A, 468 , 3027-3046
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e Carta G., Brun M., Movchan A.B., Movchan N.V. and Jones |.S. (2014), Dispersion
properties of vortex-type monatomic lattices, International Journal of Solids and
Structures, 51, 2213-2225

e wave polarisation

e dynamic anisotropy
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Background: Applications and experiments

9 Wang P, Lu L. and Bertoldi K. (2015), Topological phononic crystals with one-way elastic
edge waves, Physics Review Letters, 115, 104302
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O Nash L.M., Kleckner D., Read A., Vitelli V., Turner A.M. and Irvine W.T.M. (2015),
Topological mechanics of gyroscopic metamaterials, PNAS, 112, 14495-14500
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Recent advances: Gaussian beams, localised waveforms

The DASER
Dynamic Amplification by Spinners in Elastic Reticulated systems

e Carta, G., Jones, |.S., Movchan, N.V., Movchan, A.B. and Nieves, M.J. (2017): "Deflecting
elastic prism" and unidirectional localisation for waves in chiral elastic systems, Scientific
Reports 7, no. 1, 1-26.
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Recent advances: Uni-directional interfacial waveforms

@ Garau, M., Carta, G., Nieves, M.J., Jones, |.S., Movchan, N.V., Movchan, A.B., (2018):
Interfacial waveforms in chiral lattices with gyroscopic spinners, Proc. R. Soc. Ser A 474:
20180132.
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Steady state model for arrays of gyroscopes interacting with
trusses

Assuming
(i) small nutation @ and a constant spin rate v.

(i) Moments applied to the gyroscope about
the z and y axes are zero.

= ¢ is constant and ¢ x w

In the time-harmonic regime, the equation of motion can be written as

—mw?u = —Ku + iBw? < _q é > u B8 = I./h? — Spinner constant
I, — Moment of Inertia of gyro about =
(1)

h — "height" mass from base of gyroscope

o Brun M., Jones I.S. and Movchan A.B. (2012), Vortex-type elastic structured media and
dynamic shielding, Proceedings of the Royal Society of London A;468 ,-3027-3046
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Gyrobeams

These are flexural elements with “additional stored angular momentum".

gyrobeam
PDEs governing a gyrobeam
froe tip? =" (0<z<Lt>0)
8u(z,t) 8u(z,t) 83v(z, t)
EJ . A . h > =0
24 P o 0220t
8oz, t) 8%v(z,t) 83u(z, t)
EJ A = =0
z FE T 0220t
clamped base ;
— Y h - the gyricity parameter
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e D’Eleuterio G.M.T. and Hughes P.C. (1984), Dynamics of gyroelastic continua, Journal of
Applied Mechanics 51, 415-422.
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Transient analysis of a gyro-elastic lattice

Gyro-elastic lattice

Oz V28 Va V22 Ve Vs
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Model of a mass connected to
several rods and a gyroscopic spinner

e M. Garau, M.J. Nieves, G. Carta, and M. Brun (2019), Transient analysis of a gyro-elastic
structured medium: unidirectional waveforms, preferential directionality and cloaking,
International Journal of Engineering Science, 143, 115-141.

M.Brun et al. (2019)
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Modelling the interaction between a gyroscope and the mass

We aim to derive a linearised transient model describing the motion of the mass in this system.
This requires:

i) Linear momentum balance for the mass.
ii) Angular momentum balance of the gyroscope.
iii) Assumptions governing the motion of the system.
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Angular momentum balance for the gyroscope

Angular momentum balance:

d /
M. = E(Ig“’g) F i

External moments: Me =1l xF

(L is the vector representing the arm of F')
Moment of inertia tensor:
I, = lp(ef ®el + et ®es) + Iehb ®el .

Angular velocity vector of gyroscope:
wg = O} + dsin(0)eh + (P + dcos(0))el ,

In frame F’ we can use Euler’s equations to represent this balance. In the fixed frame F, those
equations read as:

My = IO%[—q'Ssin(du) sin(6) cos(0) + 6 cos(¢)] + I % [sin(8) sin(¢)(¢ cos(8) + ¥)] ,
My = I % [d) cos(¢) sin(0) cos(0) + 0 sin(@)] — I %[sin(@) cos(qb)(d) cos(0) + 1/;)] R

Ms = 10%(45 sin?(0)) + I % [cos(0) (¢ + ¢ cos(h))] .
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Linear momentum balance for the mass

Linear momentum balance:
F = —ch[u(t)] — mu(t)

Here, F represents the force supplied to the mass by the gyroscope, that we should determine.

Nonlinear restoring force of the rods

3 . ult) — La®® . u ()
hmanzzij{mnwLé”|1»°”la+<uawzm“>L> (t) + La
=1

lu(t) — La(®)| lu(t) + La®| |
In going forward we use the following normalisations:
. h . F - M. - I
h = ] F = = 7 = J = Oa 1 9
L L e=on T U )

and

. _ I l
a=2 i=2, i=/S4, y=14"%0 5=
L l my mi? L
to obtain all quantities in the dimensionless form.
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Assumptions on the motion of the system

Position vector of gyroscope tip:

L(t) = sin(6(t)) sin(¢(t))er
—dsin(0(t)) cos(o(t))e2
40 cos(6(t))es ,

We assume
I. The connection of the gyroscope with the mass is such that

u(t) = I(t) —1(0)
= §sin(0(t)) sin(p(t))er — dsin(0(t)) cos(p(t))ea + d(cos(0(t)) — 1)es ,

Il. The nutation angle of the gyroscope and its derivatives satisfy

‘ di0(t)

: ’gConsts, 7j=0,1,2,
dtJ
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Governing equation for the mass
Application of assumption Il (nutation angle is small) we find that

F3=0(%), u3z3=0(?, M3 = O(e?)
and from the linear momentum balance we have

3
F=-Ku(t)—y i) +0(?), K=2) alal) =3I,
j=1
now F = (F1, F2)T and u = (u1,u2)T. On the other hand, from assumptions | and Il with the
angular momentum balance give
Io .

o= 2+ —[(w + d)uz + (P + d)ig] + O(®) | . .
?5 and  (t) + () ~0
F = 7(; 2——[(w+¢>u1+<w+¢)uﬂ+0(e )

We have to leading order the sum of the precession and nutation rate is constant. We define

:m and R:(ilo) and Q= (0) + $(0) .

where ( is the gyricity of the gyroscope. Combining the above we obtain

Governing equation for the mass:
u(t) + aQRu(t) + 3u(t) =0
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Eigenmode analysis of the system
Equation of motion of the mass is:

(t) + aQRu(t) + 3u(t) =0 with R = <_(1) (1)) ‘

Introduce the time harmonic solution:
u(t) = Ael“t
The non-trivial eigenfrequencies and eigenvectors are then:
1 1
wE = o [iaﬂ + 1/ (af2)2 + 12} , Aw)=| 3—-w?

1

aQw

Example: We set o = 0.25 and observe dependency of the eigenfrequencies on 2 and some of
the modes.
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Predicting the motion of the system
u(t) = c1 A(wy )+t + coA(wy)e Wt 4 g A(w_)el“ =t + caA(w_)e 0=t

Example: We take 2 = 6, a = 0.25 and determine the behaviour of the system after release
from some initial configuration.

u(0) = (_0905) . a(0) = <0'85> .
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Validation against independent FE simulations
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Gyroelastic lattice. Equation of motion

mw2

u® = a®) . (uiren) — g@)a 4 (a0, (e _ ym)(_a)
C

(
+a® . (um-ertes) _ y()a(2) | (La@) . (yintei—en) _ ym)(_a()
+a® . (ume2) _ ym)al®) | (_al®)) . (uite) _ ym)(_a®)
2

where R is the rotation matrix

n=(40)

and « is the spinners constant
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Dispersion equation

det [C(k) ~ (M — 2)} ~0

where M= (" %) and = = .0 —la
0m o 0

Stiffness matrix

3 —2coskyl — (cos¢ +cos€)  V3(cos € — cos()

2 2
V3(cos € — cos () 3 _ 3(cos ¢ + cos§)
2 2

where ¢ = Bl 4+ ol and ¢ = L — V3,

Ck)=c
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Explicitly

w(m? — a?) —w?m trC + detC =0

wiy(k) =

wa (k) =

Three Regimes.

tr(C) — /tr2(C) — 4(1 — (a/m)2)det(C)

2(1 = (a/m)?)

tr(C) + Vtr2(C) — 4(1 — (a/m)2)det(C)

2(1 = (a/m)?)

e a? < m? subcritical- two dispersion surfaces.
e o > m? supercritical: one dispersion surface.
e a? = m? critical: one dispersion surface

M.Brun et al. (2019)

w = (m~! detC/trC)/2

Gyro-elastic waveguides

29th August 2019

19/59



	Background: Gyro-elastic and roto-flexural systems
	Monoatomic lattice
	Monoatomic lattice
	Dispersion properties
	Regimes
	Stiffening, softening and polarisation
	Tuning of dispersion properties
	Dynamic localisation

	Homogenisation and shielding

	fd@rm@0: 


