

Transformation optics and its applications to antennas

Oscar Quevedo-Teruel

School of Electrical Engineering and Computer Science KTH Royal Institute of Technology Stockholm, Sweden.

1

Outline

- Theory:
 - Transformation optics concept.
 - Types:
 - Analytical transformation.
 - Quasi-conformal transformation.
 - Non-Euclidean transformation.
- Practice:
 - Lens design.
 - Compressed lenses.
 - Planar Lenses.
 - Collimated lenses.
 - Bespoke lenses.
 - Surface propagation.
 - Cloaking.
 - Surface waves lensing.
- Conclusions.

Transformation Optics Concept

- In 2006 two pioneering papers were published in *Science* defining the concept of transformation optics:
 - According to the theory, any given electromagnetic device can be transformed into an infinite number of new ones with same electromagnetic responses.
- This tool has incredible possibilities to redesign classic devices.

3

Outline

- Theory:
 - Transformation optics concept.
 - Types:
 - Analytical transformation.
 - Quasi-conformal transformation.
 - Non-Euclidean transformation.
- Practice:
 - Lens design.
 - Compressed lenses.
 - Planar Lenses.
 - Collimated lenses.
 - Bespoke lenses.
 - Surface propagation.
 - Cloaking.
 - Surface waves lensing.
- Conclusions.

- To make an analytical transformation taking into account all the components in Maxwell's equations.
- No approximations:
 - The physical space has the same response as the original virtual space.
- In practice, this idea is unaffordable:
 - Dispersive materials.
 - Anisotropic materials.

5

6

Cargese, 30th August 2019

5

1) Analytical Transformation: Dispersive materials and anisotropy

be:

- Lets assume the simplest transformation:
 - Compression in one of coordinate axes.

D. A. Roberts, N. Kundtz, and D. R. Smith, Opt. Express, 2009. The new permittivity and permeability maps will

0 0 a $\varepsilon' = \varepsilon \{ 0 \}$ 1/a0 0 0 1/aa 0 0 1/a $\mu' = \mu_1^{\prime} 0$ 0 0 0 1/a

- Materials with refractive indexes lower than 1 can be only obtained with the use of metamaterials.
- Metamarials are strongly dispersive:
 - Very limited bandwidth of operation.

$$\varepsilon_r(\omega) = 1 - \frac{\omega_p^2}{\omega^2 - j\omega\gamma}$$

• To avoid the use of these materials is always an advantage for practical applications.

<	Cargese, 30 th August 2019	7
7		

2) Discrete Transformation

- To make a transformation based on graphical coordinates.
- Importance of the coordinate lines to be orthogonal to the metallic boundaries.
- Transformation based on areas (not in shapes).
 - It does not take into consideration non-linear effects.

Cargese, 30th August 2019

2) Discrete Transformation: Dispersive materials (I)

- Depending on the geometry, the required refractive index for the new map will have some lower than one index regions.
 - Lower than 1 refractive indexes require metamaterials implementations.
 - Dispersive materials and narrow band.

2) Discrete Transformation: Dispersive materials (II)

- Two possible solutions:
 - 1. To develop the transformation over an original dense material.
 - 2. To approximate these values to 1.

(in the second s

• To analyse the ray paths in a surface and to obtain the equivalent 2D plane which remains the same properties.

11

Cargese, 30th August 2019

- Theory:
 - Transformation optics concept.
 - Types:
 - Analytical transformation.
 - Quasi-conformal transformation.
 - Non-Euclidean transformation.
- Practice:

•

- Lens design.
 - Compressed lenses.
 - Planar Lenses.
 - Collimated lenses.
 - Bespoke lenses.
- Surface propagation.
 - Cloaking.
 - Surface waves lensing.
- Conclusions.

13

Compressed lenses: Transformation optics

• Using transformation optics, we can compress the space:

• Main direction:

Cargese, 30th August 2019

Mode-matching: Anisotropy

• Lens compression:

 A. Alex-Amor, F. Ghasemifard, G. Valerio, P. Padilla, J. M. Fernandez-Gonzalez, O. Quevedo-Teruel, "Glide-Symmetric Metallic Structures with Elliptical Holes", submitted to IEEE Transactions on Microwave Theory and Techniques.

	Cargese, 30 th August 2019	
--	---------------------------------------	--

- Option 1:
 - Fresnel Lenses
 - Single frequency of operation

- Option 2:
 - Transformation Electromagnetics
 - UWB solution.

- Quasi-conformal Transformation Optics.
- A discretization for the manufacturing process is required.

19

O. Quevedo-Teruel, et al., Scientific Reports, 2013.

Discretization process

- Spheres/Ellipsoids:
 - Ellipsoidal/spherical discretization along the iso-permittivity lines.
 - Zones of different permittivities:
 - 2<ε_r<14.5
 - 10-15 zones

O. Quevedo-Teruel, et al., *Scientific Reports*, 2013. Comparison with Fresnel lens

- Our solution overcomes Fresnel lenses in Bandwidth.
- That is the other existing planar version.

21

O. Quevedo-Teruel, et al., Scientific Reports, 2013.

- Alternative permittivity regions have been produced through a combination of tailoring:
 - 1. Particle size.
 - 2. Dispersion and volume fraction of materials.
- The particle sizes where obtained using particle size reduction methods such as milling to achieve the distribution of sizes required, and these varied from nano- to micron size.

Simulation vs Measurements

• Good agreement in terms of phase and amplitude (10 GHz)

Cylindrical wave

0.5

From cylindrical to squared waves

- Optical transformations can be used to create completely new type of lenses.
 - Transformation of a cylindrical wave in four directive beams.

27

Bespoke lenses

- To produce ad-hoc lens for practical feedings.
- Most common situation is to produce a plane wave from a given radiator:

M. McCall, J. Pendry, V. Galdi, Y. Lai, S. Horsley, J. Li, J. Zhu, R. C. Mitchell-Thomas, O. Quevedo-Teruel, P. Tassin, V. Ginis, E. Martini, G. Minatti, S. Maci, M. Ebrahimpouri, Y. Hao, P. Kinsler, J. Gratus, J. Lukens, A. M. Weiner, U. Leonhardt, I. Smolyaninov, V. Smolyaninova, R. Thompson, M. Wegener, M. Kadic, S. Cummer, "Roadmap on transformation optics", Journal of Optics, Volume 20, Number 6, May 2018.

Cargese, 30th August 2019

Bespoke lenses: Aperture antenna (I)

• Technique: Obtaining the map for the lens.

M. Ebrahimpouri, O. Quevedo-Teruel, "Bespoke Lenses Based on Quasi Conformal Transformation Optics Technique", *IEEE Transactions on Antennas and Propagation*, vol. 65, no. 5, pp. 2256-2264, May 2017.

29

Bespoke lenses: Aperture Antenna (II)

M. Ebrahimpouri, O. Quevedo-Teruel, "Bespoke Lenses Based on Quasi Conformal Transformation Optics Technique", *IEEE Transactions on Antennas and Propagation*, vol. 65, no. 5, pp. 2256-2264, May 2017.

Bespoke lenses: Spiral antenna

• The lens is not limited in bandwidth and it applies to both polarizations:

M. Ebrahimpouri, O. Quevedo-Teruel, "Bespoke Lenses Based on Quasi Conformal Transformation Optics Technique", *IEEE Transactions on Antennas and Propagation*, vol. 65, no. 5, pp. 2256-2264, May 2017.

IEEE Transactions on Antennas and Propagation, vol. 65, no. 5, pp. 2256-2264, May 2017.

A. Neto, "UWB, non dispersive radiation from the Planarly fed leaky lens antenna—Part 1: Theory and design," IEEE Trans. Antennas Propag., vol. 58, no. 7, pp. 2238–2247, Jul. 2010.

Cargese, 30th August 2019

33

33

Outline

- Theory:
 - Transformation optics concept.
 - Types:
 - Analytical transformation.
 - Quasi-conformal transformation.
 - Non-Euclidean transformation.
- Practice:
 - Lens design.
 - Conformal lenses.
 - Compressed lenses.
 - Planar Lenses.
 - Collimated lenses.
 - Bespoke lenses.
 - Surface propagation.
 - Cloaking.
 - Surface waves lensing.
- Conclusions.

• The refractive index distribution of a rotationally symmetric curved surface can mimic a equivalent a flat homogeneous surface:

R. C. Mitchell-Thomas, T.M. McManus, O. Quevedo-Teruel, S.A.R. Horsley, Y. Hao, "Perfect Surface Wave Cloaks", Physical Review Letters, vol. 111, p. 213901, Nov 2013.

35

• Cloaking in a thin metallic cavity:

Review Letters, vol. 111, p. 213901, Nov 2013.

Cargese, 30th August 2019

Surface waves implementation

• Slabs of different dielectric constants with constant thickness.

R. C. Mitchell-Thomas, T.M. McManus, O. Quevedo-Teruel, S.A.R. Horsley, Y. Hao, "Perfect Surface Wave Cloaks", *Physical Review Letters*, vol. 111, p. 213901, Nov 2013.

- Very robust design.
- Only 7 layers have been used.
- Small deviations in the manufacturing process would not seriously influence the performance.

R. C. Mitchell-Thomas, T.M. McManus, O. Quevedo-Teruel, S.A.R. Horsley, Y. Hao, "Perfect Surface Wave Cloaks", *Physical Review Letters*, vol. 111, p. 213901, Nov 2013.

Cargese, 30th August 2019

Experimental results

• Implementation with a single dielectric slab which changes the with the position to achieve different equivalent refractive indexes.

R. Mitchell-Thomas, O. Quevedo-Teruel, J. R. Sambles, A. P. Hibbins, "Omnidirectional surface wave cloak using an isotropic homogeneous dielectric coating" *Scientific Reports*, vol. 6, article number 30984, 2016.

Non-Euclidian mapping

• By equating optical path lengths, it is possible to calculate the refractive index of a lens on a curved surface.

41

pp. 3551-3554, 2014.

Cargese, 30th August 2019

Lens implementation

- A Luneburg lens can be implemented with this technique.
- The surface can be bended to reduce the vertical dimension.

Q. Liao, N.J.G. Fonseca, O. Quevedo-Teruel, "Compact Multibeam Fully Metallic Geodesic Luneburg Lens Antenna Based on Non-Euclidean Transformation Optics", *IEEE Transactions on Antennas and Propagation*, vol. 66, no. 12, pp. 7383-7388, Dec. 2018.

43

- Waveguides as connectors.
- Optimized flare design.

5

Q. Liao, N.J.G. Fonseca, O. Quevedo-Teruel, "Compact Multibeam Fully Metallic Geodesic Luneburg Lens Antenna Based on Non-Euclidean Transformation Optics", *IEEE Transactions on Antennas and Propagation*, vol. 66, no. 12, pp. 7383-7388, Dec. 2018.

Cargese, 30th August 2019

44

Port 1

36

S.,

Q. Liao, N.J.G. Fonseca, O. Quevedo-Teruel, "Compact Multibeam Fully Metallic Geodesic Luneburg Lens Antenna Based on Non-Euclidean Transformation Optics", *IEEE Transactions on Antennas and Propagation*, vol. 66, no. 12, pp. 7383-7388, Dec. 2018.

45

Cargese, 30th August 2019

Q. Liao, N.J.G. Fonseca, O. Quevedo-Teruel, "Compact Multibeam Fully Metallic Geodesic Luneburg Lens Antenna Based on Non-Euclidean Transformation Optics", *IEEE Transactions on Antennas and Propagation*, vol. 66, no. 12, pp. 7383-7388, Dec. 2018.

Cargese, 30th August 2019

47

47

Outline

- Theory:
 - Transformation optics concept.
 - Types:
 - Analytical transformation.
 - Quasi-conformal transformation.
 - Non-Euclidean transformation.
- Practice:
 - Lens design.
 - Conformal lenses.
 - Compressed lenses.
 - Planar Lenses.
 - Collimated lenses.
 - Bespoke lenses.
 - Surface propagation.
 - Cloaking.
 - Surface waves lensing.
- Conclusions.

Cargese, 30th August 2019

49

- The concept of Transformation Optics has been introduced.
- Three possible methodologies: Euclidean (analytical and discrete) and non-Euclidean have been drawn, and their advantages and disadvantages have been summarized.
- Few examples of design has been introduced:
 - 1. <u>Conformal lenses</u>:
 - They can be used to design lenses which bespoke surfaces.
 - 2. <u>Planar lenses:</u>
 - The use of metamaterials is not necessary for this design.
 - Measurements corroborate the original results.
 - 3. Surface propagation:
 - Cloaking has been demonstrating to be obtain with only full dielectric materials.
 - This technique can be employed to produce lenses conformal to surfaces and to eliminate singularities of lenses.

Cargese, 30th August 2019

49

Transformation optics and its applications to antennas

Oscar Quevedo-Teruel

<u>e-mail:</u> <u>oscarqt@kth.se</u> • <u>Webpage:</u> http://www.etk.ee.kth.se/personal/oscarqt

