Capillary driven fragmentation of large gas bubbles in turbulence

Aliénor Rivière, Daniel J. Ruth, Wouter Mostert, Luc Deike, and Stéphane Perrard
Phys. Rev. Fluids 7, 083602 – Published 30 August 2022: article link

The bubble size distribution below a breaking wave is of paramount interest when quantifying mass exchanges between the atmosphere and oceans. Mass fluxes at the interface are driven by bubbles that are small compared with the Hinze scale dh, the critical size below which bubbles are stable, even though individually these are negligible in volume. Combining experimental and numerical approaches, we report a power-law scaling d^−3/2 for the small bubble size distribution, for sufficiently large separation of scales between the injection size and the Hinze scale. From an analysis of individual bubble breakups, we show that small bubbles are generated by capillary effects, and that their breakup time scales as d^3/2, which physically explains the sub-Hinze scaling observed.


Top



See also...

Giant ripples on comet 67P/Churyumov–Gerasimenko sculpted by sunset thermal wind

Pan Jia, Bruno Andreotti, and Philippe Claudin, PNAS (2017) Abstract: Explaining the unexpected presence of dune-like patterns at the surface of (…) 

> More...

Prediction of the dynamics of a backward-facing step flow using focused time-delay neural networks and particle image velocimetry data-sets

By Antonios Giannopoulos, Jean-Luc Aider in International Journal of Heat and Fluid Flow The objective of this experimental work was to evaluate (…) 

> More...

 

Practical information

Laboratoire : 01 40 79 45 22
Directeur : Ramiro GODOY DIANA
Codirecteur : Laurent DUCHEMIN
Administratrice : Frédérique AUGER (01 40 79 45 22)
Gestionnaire : Claudette BAREZ (01 40 79 58 53)
Courriel : dir (arobase) pmmh.espci.fr