Data-driven order reduction and velocity field reconstruction using neural networks: The case of a turbulent boundary layer

By Antonios Giannopoulos and Jean-Luc Aider in Physics of Fluids 32, 095117 (2020); https://doi.org/10.1063/5.0015870

We present a data-driven methodology to achieve the identification of coherent structure dynamics and system order reduction of an experimental turbulent boundary layer flow. The flow is characterized using time-resolved optical flow particle image velocimetry, leading to dense velocity fields that can be used both to monitor the overall dynamics of the flow and to define as many local visual sensors as needed. A Proper Orthogonal Decomposition (POD) is first applied to define a reduced-order system. A non-linear mapping between the local upstream sensors (inputs sensors) and the full-field dynamics (POD coefficients) as outputs is sought using an optimal focused time-delay Artificial Neural Network (ANN). The choices of sensors, ANN architecture, and training parameters are shown to play a critical role. It is verified that a shallow ANN, with the proper sensor memory size, can lead to a satisfying full-field dynamics identification, coherent structure reconstruction, and system order reduction of this turbulent flow.


Top



See also...

Inelastic rotations and pseudoturbulent plastic avalanches in crystals

R. Baggio, O. U. Salman, and L. Truskinovsky Phys. Rev. E 107, 025004 – Published 24 February 2023: link article Plastic deformations in crystals (...) 

> More...

A non-local rheology for granular flows across yield conditions

M. Bouzid, M. Trulsson, P. Claudin, E. Clément and B. Andreotti, Phys. Rev. Lett. 111, 238301 (2013). The rheology of dense granular flows is (...) 

> More...

 

Practical information

Laboratoire : 01 40 79 45 22
Directeur : Damien Vandembroucq
Codirecteur : Philippe Petitjeans
Administratrice : Frédérique Auger (01 40 79 45 22)
Gestionnaire : Claudette Barez (01 40 79 58 53)
Courriel : dir (arobase) pmmh.espci.fr